《环境空气 气相和颗粒物中有机氯农药的测定气相色谱法》

(征求意见稿)

编制说明

《环境空气 气相和颗粒物中有机氯农药的测定 气相色谱法》

标准编制组 二〇一五年九月 项目名称:环境空气 气相和颗粒物中有机氯农药的测定 气相色谱法 项目统一编号:848

承担单位: 沈阳市环境监测中心站

编制组主要成员: 郑兴宝、曲健、李晶、卢迎红

标准所技术管理负责人: 谭玉菲

标准处项目管理负责人: 张 朔

目 录

1、项目背景	183
1.1 任务来源	183
1.2 工作过程	183
2、标准制修订的必要性分析	184
2.1 有机氯农药的环境危害	184
2.2 相关环保标准和环保工作的需要	
3、国内外相关分析方法研究	193
3.1 有机氯农药的分析方法	193
3.2 主要国家、地区及国际组织相关分析方法研究	
3.3 国内相关分析方法研究	195
4、标准制修订的基本原则和技术路线	195
4.1 标准制订的基本原则	195
4.2 标准制修订的技术路线	195
5、方法研究报告	197
5.1 方法研究目标	197
5.2 方法原理	199
5.3 试剂和材料	199
5.4 仪器和设备	
5.5 样品	
5.6 分析步骤	
5.7 结果计算与表示	
6、 方法验证	
6.1 方法验证方案	
6.2 方法验证过程	
7、与开题报告的差异说明	
8、标准实施建议	218
9、参考文献	218
附一 方法验证报告	220

《环境空气 气相和颗粒物中有机氯农药的测定 气相色谱法》 编制说明

1、项目背景

1.1 任务来源

2008年1月,国家环境保护总局下发了《关于开展 2008年度国家环境保护标准制修订项目工作的通知》 (环办函[2008]44号),向沈阳市环境监测中心下达了编制《环境空气 有机氯农药和多氯联苯的测定 大流量 PUC 采样/气相色谱-电子捕获检测器法》的项目计划,项目统一编号 848。

1.2 工作过程

(1) 成立标准编制组

2008年3月,沈阳市环境监测中心站接到编制《环境空气 有机氯农药和多氯联苯的测定 大流量 PUC 采样/气相色谱-电子捕获检测器法》的任务以后,成立了标准编制组。

(2) 工作调研及资料查询

2008年4-10月,根据国家环保标准修订工作管理办法的相关规定,查阅了中国学术期刊网络出版总库、中国重要会议论文全文数据库,检索了国际标准化组织、美国 EPA 等标准分析方法,在此基础上初步确定了标准修订原则和技术路线。

(3) 实验室内方法研究,形成标准草案和开题报告,组织标准开题专家论证会

2008年11月-2009年6月,课题组进行部分实验,初步形成了标准分析方法草案和开题报告。2009年9月,环境保护部科技标准司召开开题论证会,提出了以下具体修改意见和建议:

- 按照《环境监测分析方法标准制订技术导则》(HJ/T168)和《国家环境污染物监测方法标准制修订工作暂行要求》(环科函〔2009〕10号)的要求开展实验、验证和标准草案的编制工作;
- 将标准名称修改为"环境空气 气相和颗粒物中有机氯农药和多氯联苯的测定 气相色谱法":
- 提供多种提取、净化方法,以实验室内验证为主;
- 在质量控制部分增加对采样标的要求;
- 验证采用统一的实际样品。

(4) 购置实验设备,完善实验方案,补充实验

2009 年 10 月~2010 年 12 月,购置自动索氏提取器、快速溶剂萃取仪、有机物大流量采样器,补充实验。

(5) 组织方法验证,编写方法验证报告

2011年1月~2011年12月,准备方法验证统一样品,进行方法验证和数据汇总。

(6) 编写标准征求意见稿和编制说明(含方法验证报告)

2012年1月~2012年12月,根据方法验证情况完善方法文本,并编写方法编制说明,形成了《环境空气气相和颗粒物中有机氯农药和多氯联苯的测定气相色谱法》文本和编制说明征求意见稿。

(7) 征求意见稿专家函审

2013年9月,《环境空气 气相和颗粒物中有机氯农药和多氯联苯的测定 气相色谱法》文本和编制说明征求意见稿进行公开征求意见前的专家函审。专家提出将标准分为有机氯农药和多氯联苯两项标准,考虑到我国标准体系中水质、土壤、固体废物领域中多氯联苯又分为多氯联苯单体和多氯联苯混合物,将原标准分为《环境空气 气相和颗粒物中有机氯农药的测定 气相色谱法》、《环境空气 气相和颗粒物中多氯联苯单体的测定 气相色谱法》和《环境空气 气相和颗粒物中多氯联苯单体的测定 气相色谱法》。2013年12月,根据专家意见完成文本和编制说明修改。

2、标准制修订的必要性分析

2.1 有机氯农药的环境危害

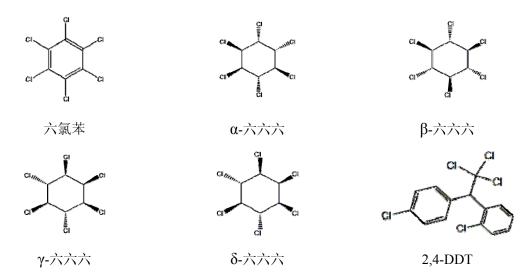
2.1.1 有机氯农药的使用历史

1874年,德国 Zeidler 进行有机化学制备理论研究,合成了 DDT。1936~1939年,瑞士化学家保尔•赫尔曼•米勒(Pual Muller)发现其杀虫功效。1942年正式投放市场,DDT 成为人类历史上第一种有机合成农药。之后,又出现狄氏剂、艾氏剂、异狄氏剂、毒杀芬、六六六、氯丹、七氯等有机氯农药。由于这些有机氯农药具有成本低、药效好、应用范围广、残效作用长等优点,在五、六十年代曾被大量生产和使用。直到 1962年,美国生物学家蕾切尔•卡逊尔出版了《寂静的春天》,引起人类对有机氯农药环境危害的关注。1970年,美国、瑞典、加拿大停止生产和使用 DDT,其他发达国家陆续停产,中国、印度分别在 1983、1989年才禁止 DDT 在农田使用。从有机氯农药开始使用至停用,全世界共生产 150万吨 DDT、970万吨六六六[1]。截止 2001年,全世界共消费艾氏剂 24万吨、狄氏剂 24万吨、氯丹 7万吨、毒杀芬 133万吨、六氯苯 100~200万吨,灭蚁灵、异狄氏剂、七氯用量不明。

我国持久性有机污染物类废气杀虫剂调查显示^[2],我国自 20 世纪 50 年代开始使用有机氯农药,在 20 世纪 70 年代达到高峰,其后在 1983 年停止了六六六(HCHs)和滴滴涕(DDTs)的生产和使用。我国曾经大规模生产滴滴涕、毒杀芬、六氯苯(HCB)、氯丹、七氯和灭蚁灵。艾氏剂、狄氏剂和异狄氏剂虽然研制但没有规模化生产。中国从 1950 年开始生产六六六,到 1983 年禁用期止,累计产量达到 490 万吨。DDT 的总产量达到 46.4 万吨,占国际总用量的 20%。目前,仍保留扬州农药厂生产滴滴涕,作为中间体来生产三氯杀螨醇,采用管道对管道的封闭操作;六氯苯总产量达到 80000吨,用来生产防治血吸虫和木材防腐的五氯酚钠(PCP-Na),2004 年完全停止了生产;氯丹总产量达到 9000吨,主要用于建筑物基础的防腐;灭蚁灵总产量 160吨,用于白蚁防治;七氯的总产量 20吨,在 80 年代停产;毒杀芬总产量 20660吨,1985 年停产。

2009年4月16日,中国环境保护部会同发展改革委等10个相关管理部门联合发布公告,决定自2009年5月17日起,禁止在我国境内生产、流通、使用和进出口滴滴涕、氯丹、灭蚁灵及六氯苯(DDT用于可接受用途即用于疟疾防治除外)。

2.1.2 有机氯农药的理化性质


有机氯农药主要有两大类:一类是氯苯类,包括六六六、滴滴涕等;另一类是氯化脂环类,包括狄氏剂、毒杀芬、氮丹七氮等。

有机氯农药也可分为以苯为原料和以环戊二烯为原料的两大类。以苯为原料的包括六六六、滴滴涕和六氯苯以及六六六的高丙体制品林丹、滴滴涕的类似物甲氧滴滴涕、乙滴涕,也包括从滴滴涕结构衍生而来的杀螨剂,如三氯杀螨砜、三氯杀螨醇、杀螨酯等。另外还包括一些杀菌剂,如五氯硝基苯、百菌清、稻丰宁等。以环戊二烯为原料的有机氯农药包括作为杀虫剂的氯丹、七氯、艾氏剂、狄氏剂、异狄氏剂、硫丹、碳氯特灵等。此外,以松节油为原料的茨烯类杀虫剂、毒杀芬和以萜烯为原料的冰片基氯也属于有机氯农药。常见有机氯农药的结构见图 1。

有机氯农药大多数为白色或淡黄色结晶或固体,不溶或非溶于水,易溶于脂肪及大多数有机溶剂,挥发性小,化学性质稳定,与酶和蛋白质有较高亲和力,故易吸附在生物体内,生物富集作用极强。

常用的有机氯农药有下列特性: (1)蒸气压低,挥发性小,会在环境中长时间存在。(2)一般是疏水性的脂溶性化合物,在水中溶解度大多低于 0.000001,个别有机氯农药水溶性虽较大,但也小于 0.00001,例如丙体六六六。这种性质使有机氯农药被吸附于颗粒上,尤其是在有机质含量丰富的土壤中,滞留期均可长达数年。(3)氯苯结构较为稳定,不易为生物体内酶系降解,有机氯农药进入动、植物体内消失缓慢。(4)有机氯农药在环境中发生氧化还原反应生产类似的衍生物,也存在着残留毒性问题,例如 DDT 的还原产物 DDD、环戊二烯类的环氧衍生物、DDT 的脱氯化氢产物 DDE 等。

常见有机氯农药的物理化学参数见表 1。

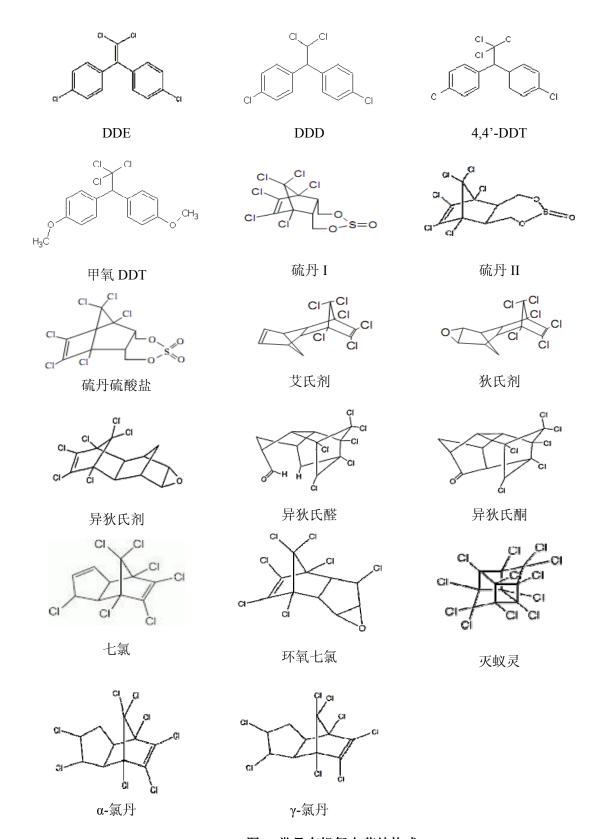


图 1 常见有机氯农药结构式

表 1 常见有机氯农药的物理化学参数

农工 带光 有机就从约时彻瑾化子参数										
英文名称	CAS 号	分子式	分子量	S	logK _{OW}	logK _{OC}	\mathbf{P}_{V}	$\mathbf{K}_{\mathbf{b}}$		
Hexachlorbenzene	118-74-1	C ₆ Cl ₆	284.78	0.065	5.73	6.08	1.09×10 ⁻⁵	5.8×10 ⁻⁴		
alpha-HCH	319-84-6	C ₆ H ₆ Cl ₆	290.83	10	3.8	3.57	4.5×10 ⁻⁵	6.86×10 ⁻⁶		
gamma-HCH (Lindane)	58-89-9	C ₆ H ₆ Cl ₆	290.83	17	3.72	3.0	4.2×10 ⁻⁵ (20°C)	3.5×10 ⁻⁶		
beta-HCH	319-85-7	C ₆ H ₆ Cl ₆	290.83	5	3.78	3.57	3.6×10 ⁻⁷ (20°C)	4.5×10 ⁻⁷		
Heptachlor	76-44-8	$C_{10}H_5Cl_7$	373.32	0.05	6.10	4.34	3×10 ⁻⁴	2.94×10 ⁻⁴		
delta-HCH	319-86-8	C ₆ H ₆ Cl ₆	290.83	10	4.14	3.8	3.5×10 ⁻⁵	2.1×10 ⁻⁷		
Aldrin	309-00-2	C ₁₂ H ₈ Cl ₆	364.91	0.011 (20℃)	6.50	7.67	1.2×10 ⁻⁴	4.9×10 ⁻⁵		
heptachlor epoxide B	1024-57-3	C ₁₀ H ₅ Cl ₇ O	373.32	0.275	5.4	3.34~4.37	1.95×10 ⁻⁵ (20℃)	3.2×10 ⁻⁵		
gamma-chlordane	5103-74-2	$C_{10}H_6C_{18}$	409.78	0.056(二者	5 54	3 49~4 64	2.9×10 ⁻⁵ (固体) 3.9×10 ⁻⁶ (悬浊液)	4.85×10 ⁻⁵		
alpha-chlordane	5103-71-9	C ₁₀ H ₆ Cl ₈	409.78	比 25/75)	3.34	3.45*4.04	2.2×10 ⁻⁵ (固体) 3.0×10 ⁻⁶ (悬浊液)	8.31×10 ⁻⁵ (γ-氯丹)		
endosulfan I	959-98-8	C ₉ H ₆ Cl ₆ O ₃ S	406.93	0.53	3.83	3.55	1.0×10 ⁻⁵	1.01×10 ⁻⁴		
4,4'-DDE	72-55-9	C1 ₄ H ₈ Cl ₄	318.03	0.12	6.51	4.7	6.0×10 ⁻⁶	2.1×10 ⁻⁵		
Dieldrin	60-57-1	C ₁₂ H ₈ Cl ₆ O	380.91	0.11 (20℃)	6.2	6.67	5.89×10 ⁻⁵	5.2×10 ⁻⁵		
Endrin	72-20-8	C ₁₂ H ₈ Cl6O	380.91	0.2	5.6	4.532	2.0×10 ⁻⁷	4.0×10 ⁻⁷		
4,4'-DDD	72-54-8	C ₁₄ H ₁₀ Cl ₄	320.04	0.090	6.02	5.18	1.6×10 ⁻⁷	8.3×10 ⁻⁶		
endosulfan II	33213-65-9	C ₉ H ₆ Cl ₆ O ₃ S	406.93	0.28	3.52		1.0×10 ⁻⁵	1.9×10 ⁻⁵		
2,4'-DDT	789-02-6	C ₁₄ H ₉ Cl ₅	354.49	0.085	6.79	5.35	1.1×10 ⁻⁷ (20°C)	5.9×10 ⁻⁹		
4,4'-DDT	50-29-3	C ₁₄ H ₉ Cl ₅	354.49	0.025	6.91	5.18	1.35×10 ⁻⁶	4.0×10 ⁻⁶		
endrin aldehyde	7421-93-4	C ₁₂ H ₈ Cl ₆ O	380.91	50	4.7	3.929~4.653	2.0×10 ⁻⁷	2×10 ⁻⁹		
endosulfan sulfate	1031-07-8	C ₉ H ₆ Cl ₆ O ₄ S	422.92	0.22	3.66		1.0×10 ⁻⁵	2.61×10 ⁻⁵		
Mthoxychlor	72-43-5	C ₁₆ H ₁₅ Cl ₃ O ₂	345.65	0.045	4.68~5.08	4.9	1.4×10 ⁻⁵ (估计值)	1.6×10 ⁻⁵ (估计值)		
endrin ketone	53494-70-9	C ₁₂ H ₉ Cl ₅ O	346.46		4.99			2.02×10 ⁻⁸		
Mirex	2385-85-5	C ₁₀ HC ₁₂	545.54	0.6	5.28	3.763	3×10 ⁻⁷	5.16×10 ⁻⁴ (22°C)		
	Hexachlorbenzene alpha-HCH gamma-HCH (Lindane) beta-HCH Heptachlor delta-HCH Aldrin heptachlor epoxide B gamma-chlordane alpha-chlordane endosulfan I 4,4'-DDE Dieldrin Endrin 4,4'-DDD endosulfan II 2,4'-DDT 4,4'-DDT endrin aldehyde endosulfan sulfate Mthoxychlor endrin ketone	Hexachlorbenzene 118-74-1 alpha-HCH 319-84-6 gamma-HCH (Lindane) 58-89-9 beta-HCH 319-85-7 Heptachlor 76-44-8 delta-HCH 319-86-8 Aldrin 309-00-2 heptachlor epoxide B 1024-57-3 gamma-chlordane 5103-74-2 alpha-chlordane 5103-71-9 endosulfan I 959-98-8 4,4'-DDE 72-55-9 Dieldrin 60-57-1 Endrin 72-20-8 4,4'-DDD 72-54-8 endosulfan II 33213-65-9 2,4'-DDT 789-02-6 4,4'-DDT 50-29-3 endrin aldehyde 7421-93-4 endosulfan sulfate 1031-07-8 Mthoxychlor 72-43-5 endrin ketone 53494-70-9	英文名称 CAS 号 分子式 Hexachlorbenzene 118-74-1 C ₆ Cl ₆ alpha-HCH 319-84-6 C ₆ H ₆ Cl ₆ gamma-HCH (Lindane) 58-89-9 C ₆ H ₆ Cl ₆ beta-HCH 319-85-7 C ₆ H ₆ Cl ₆ Heptachlor 76-44-8 C ₁₀ H ₅ Cl ₇ delta-HCH 319-86-8 C ₆ H ₆ Cl ₆ Aldrin 309-00-2 C ₁₂ H ₈ Cl ₆ heptachlor epoxide B 1024-57-3 C ₁₀ H ₅ Cl ₇ O gamma-chlordane 5103-74-2 C ₁₀ H ₆ Cl ₈ endosulfan I 959-98-8 C ₉ H ₆ Cl ₆ O ₃ S 4,4'-DDE 72-55-9 C1 ₄ H ₈ Cl ₄ Dieldrin 60-57-1 C ₁₂ H ₈ Cl ₆ O Endrin 72-20-8 C ₁₂ H ₈ Cl ₆ O 4,4'-DDD 72-54-8 C ₁₄ H ₁₀ Cl ₄ endosulfan II 33213-65-9 C ₉ H ₆ Cl ₆ O ₃ S 2,4'-DDT 789-02-6 C ₁₄ H ₉ Cl ₅ 4,4'-DDT 50-29-3 C ₁₄ H ₉ Cl ₅ endrin aldehyde 7421-93-4 C ₁₂ H ₈ Cl ₆ O endosulfan sulfate 1031-07-8 C ₉ H ₆ Cl ₆ O ₄ S Mthoxychlor 72-43-5 C ₁₆ H ₁₅ Cl ₃ O ₂ endrin ketone 53494-70-9 C ₁₂ H ₉ Cl ₅ O	英文名称 CAS 号 分子式 分子量 Hexachlorbenzene 118-74-1 C ₆ Cl ₆ 284.78 alpha-HCH 319-84-6 C ₆ H ₆ Cl ₆ 290.83 gamma-HCH (Lindane) 58-89-9 C ₆ H ₆ Cl ₆ 290.83 beta-HCH 319-85-7 C ₆ H ₆ Cl ₆ 290.83 Heptachlor 76-44-8 C ₁₀ H ₅ Cl ₇ 373.32 delta-HCH 319-86-8 C ₆ H ₆ Cl ₆ 290.83 Aldrin 309-00-2 C ₁₂ H ₈ Cl ₆ 364.91 heptachlor epoxide B 1024-57-3 C ₁₀ H ₅ Cl ₇ O 373.32 gamma-chlordane 5103-74-2 C ₁₀ H ₆ Cl ₈ 409.78 alpha-chlordane 5103-71-9 C ₁₀ H ₆ Cl ₈ 409.78 endosulfan I 959-98-8 C ₉ H ₆ Cl ₆ O ₃ S 406.93 4,4'-DDE 72-55-9 C1 ₄ H ₈ Cl ₄ 318.03 Dieldrin 60-57-1 C ₁₂ H ₈ Cl ₆ O 380.91 4,4'-DDD 72-54-8 C ₁₄ H ₉ Cl ₅ O 380.91 4,4'-DDT 789-02-6 C ₁₄ H ₉ Cl ₅ O 354.4	英文名称	英文名称 CAS 号 分子式 分子量 S logKow Hexachlorbenzene 118-74-1 C ₆ Cl ₆ 284.78 0.065 5.73 alpha-HCH 319-84-6 C ₆ H ₆ Cl ₆ 290.83 10 3.8 gamma-HCH (Lindane) 58-89-9 C ₆ H ₆ Cl ₆ 290.83 17 3.72 beta-HCH 319-85-7 C ₆ H ₆ Cl ₆ 290.83 5 3.78 Heptachlor 76-44-8 C ₁₀ H ₃ Cl ₇ 373.32 0.05 6.10 delta-HCH 319-86-8 C ₆ H ₆ Cl ₆ 290.83 10 4.14 Aldrin 309-00-2 C ₁₂ H ₈ Cl ₆ 364.91 0.011 (20°C) 6.50 heptachlor epoxide B 1024-57-3 C ₁₀ H ₅ Cl ₇ O 373.32 0.275 5.4 gamma-chlordane 5103-74-2 C ₁₀ H ₅ Cl ₈ 409.78 0.056 (二者 比 25/75) 5.54 alpha-chlordane 5103-71-9 C ₁₀ H ₆ Cl ₈ 409.78 0.056 (二者 比 25/75) 5.54 endosulfan I 959-98-8 C ₉ H ₆ Cl ₆ O ₃ S 406	英文名称 CAS 号 分子式 分子量 S logKow logKoc Hexachlorbenzene 118-74-1 C ₆ Cl ₆ 284.78 0.065 5.73 6.08 alpha-HCH 319-84-6 C ₆ H ₆ Cl ₆ 290.83 10 3.8 3.57 gamma-HCH (Lindane) 58-89-9 C ₆ H ₆ Cl ₆ 290.83 17 3.72 3.0 beta-HCH 319-85-7 C ₆ H ₆ Cl ₆ 290.83 5 3.78 3.57 Heptachlor 76-44-8 C ₁₀ H ₅ Cl ₇ 290.83 5 3.78 3.57 Heptachlor 76-44-8 C ₁₀ H ₅ Cl ₇ 290.83 10 4.14 3.8 Aldrin 319-86-8 C ₆ H ₆ Cl ₆ 290.83 10 4.14 3.8 Aldrin 309-00-2 C ₁₂ H ₈ Cl ₆ 364.91 0.011 (20°C) 6.50 7.67 heptachlor epoxide B 1024-57-3 C ₁₀ H ₅ Cl ₆ 390.78 0.275 5.4 3.34-4.37 gamma-chlordane 5103-71-2 C ₁₀ H ₅ Cl ₆ O ₃ 8 <	英文名称 CAS 号 分子式 分子量 S logKow logKoc Pv Hexachlorbenzene 118-74-1 C ₀ Cl ₆ 284.78 0.065 5.73 6.08 1.09×10 ⁻⁵ alpha-HCH 319-84-6 C ₆ H ₆ Cl ₆ 290.83 10 3.8 3.57 4.5×10 ⁻⁵ gamma-HCH (Lindane) 58-89-9 C ₆ H ₆ Cl ₆ 290.83 17 3.72 3.0 4.2×10 ⁻⁵ (20°C) beta-HCH 319-85-7 C ₆ H ₆ Cl ₆ 290.83 5 3.78 3.57 3.6×10 ⁻⁷ (20°C) Heptachlor 76-44-8 C ₁₀ H ₅ Cl ₇ 373.32 0.05 6.10 4.34 3×10 ⁻⁴ delta-HCH 319-86-8 C ₄ H ₄ Cl ₆ 290.83 10 4.14 3.8 3.5×10 ⁻⁵ Aldrin 309-00-2 C ₁₂ H ₅ Cl ₆ 364.91 0.011 (20°C) 6.50 7.67 1.2×10 ⁻⁴ heptachlor epoxide B 1024-57-3 C ₁₀ H ₆ Cl ₈ 409.78 0.056 (二者 1.2×10 ⁻⁴ 1.9×10 ⁻⁵ (20°C) gamma-chlordan		

摘自 www.atsdr.cdc.gov 注: S------化合物在水中的溶解度(25℃),mg/L; KOW----辛醇-水分配系数; KOC----沉积物-水分配系数; PV-----蒸气压(25℃),mmHg; Kb-----亨利常数,atm·m³/mol

2.1.3 有机氯农药的环境危害

环境中存在的有机氯农药对人类及其它生物都造成了严重的威胁,这主要是因为有机氯农药在环境不容易降解,通过生物的富集作用,然后再通过食物链进入人体或生物体内造成积累而发生作用。由于有机氯农药具有很高的脂溶性,在生物体内不易被代谢降解而排出体外,因此很容易在生物体内富集,特别是在水生生物(如鱼类)体内的富集倍数就更高。当人类再食用后便在体内积累从而对人类的健康产生危害。有机氯农药的危害主要包括:

- (1)慢性毒作用。连续接触、吸入或食用较小量(低于急性中毒剂量)的农药,农药在人体组织内逐步蓄积,将引起慢性中毒。中毒者主要表现为食欲不振、上腹部和肋下疼痛、头晕、头痛、乏力、失眠、噩梦等。
- (2)影响酶类。许多有机氯杀虫剂可以诱导肝细胞微粒体氧化酶类,从而改变体内某些生化过程。此外对其他一些酶类也有一定影响,如对多种三磷酸营酶具有抑制作用。
 - (3) 影响内分泌系统。有机氯杀虫剂具有雌性激素的作用,可以干扰人体内分泌系统的功能。
- (4) 影响生殖机能。有机氯杀虫剂对鸟类生殖机能的影响主要表现在使鸟类产蛋数目减少,蛋壳变薄和胚胎不易发育,明显影响鸟类的繁殖。此外,有机氯杀虫剂对哺乳动物的生殖能力也有一定影响。

此外,大多数有机氯农药具备持久性有机物的特性,属于持久性有机污染物。具备以下特点:

- (1) 持久性, 在水中半衰期大于 2 个月, 土壤中的半衰期大于 6 个月等。
- (2) 生物累积性, 水生物积累因子大于 5000, 或 logKow 大于 5 等。
- (3) 远距离传输,可通过空气、水或迁徙物种而有较大的远距离传播能力,或者破坏环境特性证明具有远距离传播潜力。

2001 年《关于持久性有机污染物的斯德哥尔摩公约》首批受控 POPs 清单包括 12 种化学物质——艾氏剂、氯丹、狄氏剂、异狄氏剂、七氯、灭蚁灵、毒杀芬、六氯苯、DDT、PCB、多氯二苯并二噁英、多氯二苯并呋喃,前 9 种为有机氯农药;2009 年第二批清单新增 9 种——γ-六六六、α-六六六、β-六六六、开蓬、六溴联苯、商用五溴二苯醚、商用八溴二苯醚、全氟辛烷磺酸、五氯苯,前 4 种为有机氯农药;2011 年第三批清单新增 1 种——硫丹,属于有机氯农药。到目前为止,共计 14 种有机氯农药。

2.1.4 大气有机氯农药的主要来源

空气中农药类的来源主要包括农药的生产、施撒过程及农田表层土壤的释放。农药是重要的农用物资,在世界农业生产中扮演着重要角色,对防治病、虫、草、鼠害、保证农业高产稳产有着非常重要的作用。现代农业农药的使用量很大,品种复杂,而且地域分布广泛。经济越发达,使用农药越多,因此农药的施撒过程是大气中农药的最主要来源。在以农业经济占主导地位的珠江三角洲地区^[3],各种环境介质中均存在不同程度的农药类污染,认为农药的施撒是该地区环境介质中的DDT、HCHs等污染物的主要来源。2001年4月至6月对珠三角洲地区14个采样点空气中有机氯农药的干湿沉降进行的研究,结果表明来源于农业用地土壤的空气颗粒中含有大量的POPs农药。史

晓乐等[4]认为大气中有机氯农药污染的主要来源包括:(1)有机氯农药施用过程的挥发、漂移、损失;(2)施用有机氯农药后的植物和土壤表面残留农药的挥发;(3)有机氯农药生产、加工过程的损失,如农药成品的挥发,废气、烟雾、粉尘的排放等;(4)通过远距离传输,从有机氯农药污染区向全球传播。大气中残留的有机氯农药漂浮或被大气中的飘尘所吸附,或以气体或气溶胶的状态悬浮于空气中。随大气的运动而扩散,使大气污染的范围不断扩大,具有高稳定性的有机氯农药能够进入大气对流层中,从而传播到很远的地方,使污染区域不断扩大。进入大气中的有机氯农药能够进入大气对流层中,从而传播到很远的地方,使污染区域不断扩大。进入大气中的有机氯农药一部分由于蒸汽凝结而进入土壤和水体;另一部分则发生光化学分解(主要被空气中的氧和臭氧所氧化)。而有机氯农药非常稳定,发生分解的过程非常缓慢。大气中残留的有机氯农药将发生迁移、降解、随雨水沉降等一系列物理化学过程。残留的农药主要通过大气传输的方式向高层或其他地区迁移,从而使农药的污染范围不断扩大。目前远离农业活动区的南、北极地区以及地球最高的山峰珠穆朗玛峰均已发现有 DDT 或六六六的残留,甚至终年居住在冰冻不化的、从未接触过有机氯农药的格陵兰地区的爱斯基摩人,在其体内也检测到了微量的 DDT。

2.1.5 有机氯农药的大气污染水平

2007 年 6 月-2008 年 5 月,对新加坡大气和雨水样品进行监测,结果显示大气中 OCPs 的年平均浓度为 695pgm³,雨水样品中年平均浓度为(颗粒物+溶解的气体)114.2ng/L,在雨水中有机氯农药,六六六(HCH)比滴滴涕(DDT)的含量更大,类似的模式分布也出现在空气样本中^[5]。印度Parangipettai 大气中 DDT 和 HCH 浓度分别为 0.16-5.93ng/m³ 和 1.45~35.6ng/m³^[6];德国汉堡工业区大气中 α-HCH 和 γ-HCH 浓度分别为 18.9 ng/m³ 和 15.3ng/m³^[7];非洲刚果首都大气中 ΣDDT 浓度为2.8ng/m³^[8]。2008 年 1 月至 10 月韩国大气中的持久性有机污染物的监测结果如下:HCB 41.2~344.3 pg/m³,DDTs (p,p′-DDT, o,p′-DDT, p,p′-DDE, o,p′-DDD, o,p′-DDD, o,p′-DDD 的总和)47.55 pg/m³,氯丹(反式-氯丹,顺式-氯丹,反式-九氯,顺式-九氯,oxychlordane 的总和)38.97 pg/m³,七氯(七氯和环氧七氯的总和) 9.19 pg/m³,狄试剂 4.32 pg m⁻³[9]。2004-2005 年对格陵兰岛努克大气中的有机氯农药进行考察,各有机氯农药年平均浓度如下:α-HCH 20.2 pg/m³,γ-HCH (林丹) 5.1 pg/m³,硫丹 4.8 pg/m³,狄试剂 1.9pg/m³。总氯丹和 DDT 浓度相似,比 α-HCH 和 γ-HCH 的浓度要低^[10]。2006.8-2007.5对土耳其科尼亚市大气中有机氯农药进行研究,发现平均浓度为 4.78ng/m³,六六六和滴滴涕分别占总有机氯农药的 30%和 21%^[11]。Chubashini 等^[12]于 2006-2007 年在智利北部、中部和南部采集了 20几个大气样品,结果表明所有样品中都出现了 α-六六六、γ-六六六、α-硫丹和百菌清,说明有机氯农药在智利环境大气中普遍存在。甚至在无人类干扰的南北极大气中也可检出。

我国使用的有机氯农药主要是六六六、滴滴涕(DDT)和氯丹,七氯、硫丹、灭蚁灵等在南方也有使用。国外大气中检测到的艾氏剂、狄试剂和异狄试剂,在中国基本上检测不到。国内学者对大气中OCPs的研究主要集中在沿海一带和经济发达地区,尤其是珠江三角洲地区。刘国卿等^[13]分冬、春航次采集了珠江口及南海北部近海海域的大气样品,同时以广州和中山作为陆基对照点,对大气中的有机氯农药(OCPs)进行了系统分析。结果表明,大气中的有机氯农药主要为 HCHs、DDTs和氯丹,其含量范围分别为 13~99、73~390、63~224 pg/m3(冬季航次)和 10~106、429~1 003、1 724~9

638 pg/m3(春季航次)。总体而言,春季航次期间的大气 OCPs 含量普遍高于冬季航次。研究发现,珠江口及南海近海海域大气 OCPs 主要受控于陆源污染的影响,呈现近陆点高和远陆点低的特点,而高含量 γ- HCH 的检出与林丹的继续使用有关,"新"DDT 的污染主要来自三氯杀螨醇的生产和使用以及船舶防污油漆中使用的滴滴涕。春季航次期间大气氯丹含量的高值,源于白蚁高发期氯丹的大量使用以及西太平洋地区的大气长距离输送。珠江三角洲一带在 2008~2009 年监测到 ng/m³级 DDTs,推测与珠江口船舶防污油漆污染和三氯杀螨醇的使用有关;同时,该区域的氯丹污染也较其他地区严重,监测到几百至二千多 pg/m³ 氯丹,主要由于《关于持久性有机污染物的斯德哥尔摩公约》 2004 年生效时,我国对 DDT、氯丹、灭蚁灵及六氯苯申请了 5 年的豁免,2009 年 5 月起,我国禁止在本国境内生产、流通、使用和进出口滴滴涕、氯丹、灭蚁灵及六氯苯(DDT 用于可接受用途即用于疟疾防治除外)。珠三角地区白蚁危害较重,氯丹主要用于预防房屋建筑、坝堤、电缆、草坪等白蚁危害,因此环境空气中氯丹尤其以白蚁高发期的春季污染严重。其他有机氯农药的污染较轻,报道较少。Liu^[14]等对太湖地区大气中的 OCPs 进行测定,发现 ΣDDT 浓度接近 1ng/m³;广州中山大气样品中滴滴涕、六六六和氯丹的含量范围分别为 73-390pg/m³ 和 63-224pg/m³ [13]。Peter等[15] 发现有机氯农药(包括 DDT,DDE,七氯,硫丹)在香港大气中普遍存在,但是浓度不高,范围在0.02~0.23ng/m³。

1996 年呼和浩特市空气颗粒物中 HCHs 冬、夏季均值分别为 1070 和 502 pg/m³,DDTs 冬、夏季均值分别为 85 和 108 pg/m³^[16]。2002 年北京市颗粒物中 HCHs 含量为 240pg/m³,DDTs 含量为 962pg/m³;天津市颗粒物中 HCHs 含量为 581 pg/m³,DDTs 含量为 1874pg/m³^[17]。 2005~2009 年间 环境空气中的有机氯农药污染水平为几个至一千多 pg/m³,其中六六六以 α -HCHs、 γ -HCHs 为主,污染水平在 ng/m³ 以下。另外在西藏拉萨地区大气样品中也监测出了有机氯农药, α -HCH、 γ - HCH、pp' – DDT、pp' – DDE、op' – DDT、 α -硫丹和 β -硫丹的浓度分别为 2.3,10.3,3.2,2.9,5.8,6.3 和 2.2 pg/m³^[18]。 珠穆朗玛峰大气中 OCPs 的最高浓度为 α -HCH19.2 Pg/m³、 γ - HCH 7.7Pg/m³,DDT 之类也达到 5pg/m³。

表 2 列出的是中国部分地区大气中有机氯农药的污染水平。从表中可以看出,我国部分区域大气中有机氯农药的污染还是较重。而且有机氯农药在大气中的残留浓度与季节有关。

表 2	我国部分地区大气中有机氯农药的污染水平	单位: pg/m³

				1X 4 1X			**************************************		平位: pg/I	11			
地点	珠江口南海 北部近岸海 域[19]1 冬季	广州[19]	广州天河区 [20]	南昌市[21]	西安市[22]	青藏高原[23] 季风区(被动 采样)	青藏高原 [23]西风 区	北京通州区 [24]	北京大兴区 [24]	广州[25] (被动采样)	香港[25]	瓦里关 [26]	青岛[26]
时间	2008~2009	2008~2009	2006~2007	2008~2009	2008	2007~2008	_	2005	2005	_	_	2005	2005
研究对象	气相和 颗粒物	气相和 颗粒物	气溶胶	颗粒物	气相和 颗粒物	气相	_	气相和 颗粒物	气相和 颗粒物	气相和 颗粒物	气相和颗 粒物	气相和 颗粒物	气相和 颗粒物
六氯苯			4.7	148 (PM ₁₀) 67 (TSP)	74.9	28±18	25±31	222 (春)、85.3 (秋)	330 (春)、 52.7 (秋)	_	_	38.4±19.1	220±186
α-НСН	12 (冬季) 17.9 (春季)	52.9 (冬季) 63.1 (春季)	12.1	42 (PM ₁₀) 56 (TSP)	17.2	4.0±2.3	3.5±0.4	_	_	134	46	58.4±24.4	77.3±41
ү-НСН	42.4 (冬季) 23 (春季)	15 (冬季) 13.3 (春季)	11.9		168.3	2.4±3	5.6±5.9	_	_	539	51	139±58	289±236
β-НСН	_	_	82.6	0 (PM ₁₀) 106 (TSP)	_	_	_	_	_	_	_	_	_
七氣	_	_	11.8	132 (PM ₁₀) 31 (TSP)	_		_	未检出	未检出	_	_	_	
δ-НСН	_	_	17.4	639 (PM ₁₀) 106 (TSP)	_	_	_	_	_	_	_	_	_
艾氏剂	_	_	5.2	76 (PM ₁₀) 22 (TSP)				未检出	未检出	_	_	_	_
γ-氯丹	39.1 (冬季) 2529 (春季)	131.3(冬季) 248.1(春季)	17.5	_	97.3		_	未检出(春)、 3.9(秋)	未检出(春) 1.29(秋)	871	389	22.1±15	398±312
α-氯丹	58.1 (冬季) 2048 (春季)	195.3(冬季) 289.2(春季)	6.5	_	104		-	未检出(春)、 4.89(秋)	未检出(春) 1.78(秋)	1340	380	18.1±11.8	91.2±105
硫丹 I	_	_	_	_	_	1.2±1.3	3.1±2.1	-	_	246	148	_	
4,4'-DDE	43.8 (冬季) 121.6 (春季)	86.3 (冬季) 159.2 (春季)	30.5	103 (PM ₁₀) 108 (TSP)		5.4±3.7	1.3±0.5	4.62 (春) 6.79 (秋)	9 (春) 26.5 (秋)	207	56	5.1±4.8	59.5±44
狄氏剂	_	_	15	_	_	_	-	未检出	未检出	_	_	_	_
异狄氏		_	_	_	_			未检出	未检出	_	_	_	_
4,4'-DDD	_	_	16.2	113 (PM ₁₀) 28 (TSP)	_	_	_	未检出(春) 40.4(秋)	_	_	_	_	_
2,4'-DDT	146.1(冬季) 711.8(春季)	170.7(冬季) 179.4(春季)	86.5	783 (PM ₁₀) 158 (TSP)	_	19±13	5.3±3.4	未检出(春)、 未检出(秋)	_	_	_	17.9±20.3	80.6±62.4
4,4'-DDT	44.6 (冬季) 77.3 (春季)	216.9(冬季) 1068.7(春季)	22.8	1324 (PM ₁₀) 229	167.4(DDT 总量)	6.1±3.8	1.6±0.8	5.65 (春)、 23.6 (秋)	未检出(春) 13(秋)	789 (DDT 总量)	358 (DDT 总量)	4.4±5.7	54.6±49.2

2.2 相关环保标准和环保工作的需要

我国对环境中有机氯农药的控制主要集中在水和土壤中滴滴涕和六六六的控制,其他种类的有机氯农药基本未涉及,相关的标准包括《生活饮用水卫生标准》(GB5749-2006)、《地表水环境质量标准》(GB3838-2002)、《地下水质量标准》(GB/T 14848-93)、《海水水质标准》(GB 3097-1997)和《土壤环境质量标准》(GB15618-1995)。除了环境标准外,中国对农产品颁布了安全质量标准,但是也以滴滴涕和六六六为主。环境空气中没有有机氯农药相关的控制标准,只有《工作场所有害因素职业接触限值》(GBZ 2.1-2007)标准中规定了工作场所六六六的 8h 加权平均容许浓度(PC-TWA)为 0.3 mg/m³,短时接触浓度限值(PC-STEL)为 0.5 mg/m³;而 γ-六六六的 8h 加权平均容许浓度为 0.05 mg/m³,短时接触浓度限值为 0.1 mg/m³。对于滴滴涕只规定了 8h 加权平均容许浓度为 0.2mg/m³。

美国职业卫生相关部门规定了滴滴涕、艾氏剂、氯丹、狄氏剂、硫丹、异狄氏剂、七氯和林丹的职业卫生标准,美国环保局规定了部分农药的危险剂量,部分州还规定了可接受环境空气浓度水平,详见表3。

表 3 美国相关有机氯农药的标准

 mg/m^3

	衣り天	凶作大有机象化	2571071071世		mg/m
化合物名称	NIOSH* 推荐性接触限 值(REL-TWA)	OSHA* 容许接触限值 (PEL-TWA)	ACGIH* 时间加权平均阈限值 (TLV-TWA)	EPA 有害废物 管理标准危险 剂量	各州可接受环境空气浓度
滴滴涕	0.5	1.0	1.0	1.0×10 ⁻⁴	1.0 (NH、NM,OEL*)
艾氏剂	0.15	0.25	0.25	_	$2.0 \times 10^{-4} \mu g/m^3 \text{ (WA,ASIL*)}$
氯丹	_	0.5	_	_	
狄氏剂	0.15	0.25	0.25	_	$2.2\times10^{-4}\mu\text{g/m}^3$ (WA,ASIL)
硫丹	0.1	_	0.1	_	0.24~1.0μg/m³ (24h) 0.07~0.3μg/m³ (年) 1~10μg/m³ (8h)
异狄氏剂/醛 /酮	0.1	0.1	0.1	_	$0.24\sim1.7$ μg/m³(24h) $0.05\sim2.4$ μg/m³(年) $0.001\sim2.4$ μg/m³(8h)
六氯苯	_	_	0.002	2.0×10 ⁻⁵	$2.0 \times 10^{-3} \mu g/m^3$ (ID) $2.2 \times 10^{-3} \mu g/m^3$ (ID,ASIL)
六六六	0.5	0.5	0.5	2.0×10 ⁻⁵	
七氯	_	0.5	_	_	_
林丹	_	0.5	_	_	0.24~1.7μg/m ³ (24h)
灭蚁灵	_	_	_	_	0.03~0.88μg/m³ (年)
Aroclor 1242	0.001mg/m^3	1mg/m ³	1 mg/m ³		_
Aroclor 1254	0.001 mg/m ³	0.5mg/m^3	0.5 mg/m^3		_

源自 Toxicological Profile,ATSDR[EB/OL].http://www.atsdr.cdc.gov/toxprofiles/,2012-05-24/2012-06-24

中国做为《关于持久性有机污染物的斯德哥尔摩公约》的履约单位,有机氯农药做为持久性有机物需要大量的基础数据,环境空气介质中的持久性有机物含量也是履约成效的反映,我国需要相关配套的分析方法。

^{*}NIOSH 美国职业安全卫生研究所;OSHA 美国劳工部职业安全卫生管理局;ACGIH 美国政府职业卫生工作者协会;OEL 职业接触水平;ASIL 可接受的源排放水平。

3、国内外相关分析方法研究

3.1 有机氯农药的分析方法

3.1.1 采样方法

环境空气中有机氯农药的采样方法主要有两种方式,一种是主动采样,另外一种是被动采样。

主动采样一般利用大流量采样器进行样品采集,大气颗粒物采集于玻璃纤维滤膜上,气相中的有机 氯农药采集于聚氨酯泡沫,或上下用聚氨酯泡沫支撑和覆盖的 XAD-2 树脂中,采集时间为 1 天至几天。但是大流量有机物采样器价格昂贵、体积大、需要电力驱动,对操作人员要求高,加之野外条件苛刻,在 POPs 观测中受到限制。被动采样技术由于不需要动力,可以长时间采样,无需特别维护,近年来已成为大流量采样器的补充手段,特别适用于较广区域范围内大气 POPs 同步观测和与人体暴露有关的微环境观测。但是聚氨酯泡沫被动采样的采样速率一般是通过大流量采样器获得的大气中污染物的浓度数据来对其进行校准^[27]。

被动采样技术基于气体分子扩撒和渗透原理,利用吸附剂捕集空气中气态有机污染物,有机物在吸附剂和空气间传输,随着采样时间的延长,污染物从吸附剂上的逸失速率逐渐增加,当捕集速率和逸失速率相等时,即达到动态平衡,目前的研究基本在逸失速率逐渐增加前停止采样。被动采样所用的吸附材料包括半透膜、聚氨酯泡沫、XAD-2 树脂等,不同吸附材料的采样时间有差别,一般半透膜和 XAD-2 树脂的连续采样时间可以达到数月至数年,聚氨酯泡沫的采样时间是数周至数月。由于聚氨酯泡沫被动采样装置便于运输、操作简便、吸附材质的净化简单,得到日益广泛的应用,并在应用中逐渐完善。

3.1.2 样品预处理方法

环境空气中的有机氯农药一般采集于聚氨酯泡沫上,可以采用经典索氏提取器、快速溶剂萃取、自动索氏提取等方式进行提取。美国 EPA 将经典索式提取方法作为标准方法之一,将快速溶剂萃取(ASE)做为推荐的标准方法。ASE 以其快速、高效、节省溶剂的特点,越来越得到广泛应用。文献报道的提取试剂包括二氯甲烷^[28]、二氯甲烷/丙酮(1/1)混合溶液^[29],美国 EPA 方法 TO-4A 采用乙醚/正己烷(10/90)提取,提取效率未见详细报道。

样品的净化方法包括弗罗里硅土、氧化铝、硅胶柱净化,以及凝胶渗透色谱净化(GPC)、浓硫酸磺化等,可以使用柱层析,也可以采用商品柱。GPC净化利用组分分子大小不同从凝胶柱洗脱的顺序不同来分离目标化合物,大分子杂质可先被淋洗下来,这种净化方法对于土壤、生物样品的净化效果十分明显。浓硫酸磺化只是适用于对浓硫酸稳定的有机氯农药的净化。层析柱的柱容量较高,适用于样品中干扰物较多的情况。

3.1.3 有机氯农药的分析方法

常用有机氯农药的分析方法包括气相色谱法、气相色谱质谱法。

有机氯农药由于在其分子结构中含有氯原子,而气相色谱电子捕获监测器(ECD)对卤族原子具有高的灵敏度和高选择性,30m的毛细色谱柱具有高分离效能,目前是有机氯农药最常用的手段。但是,气相色谱法只能利用保留时间定性,ECD检测器敏感,而环境样品基质复杂,容易受到样品背景的干扰,

从而引起测定结果偏高。对样品的净化也有很高的要求,通常采用双柱辅助定性,保证定性的准确性。

目前使用较多的另一种技术是气相色谱质谱(GC/MS)技术联用,GC/MS法不仅根据样品中待测组分在图谱上的保留时间,更主要是根据在此保留时间内残留农药裂解的特征离子碎片,由质谱仪按其分子量和分子结构对农药准确定性,并以此作为定量的依据,从而克服了由于未净化掉的杂质峰与农药保留时间重叠而造成将杂质峰误判为农药的缺点。目前广泛应用的气相色谱质谱是气相色谱-低分辨质谱联用技术,它可以克服部分环境背景的干扰,但是灵敏度不如气相色谱电子捕获检测器。气相色谱高分辨质谱可以由分子量直接计算出化合物的元素组成从而推出分子式,同位素稀释-高分辨气相色谱-高分辨质谱法具有高灵敏度、高质量测量精度、低检出限、低定量限和高选择性等优势,可以满足环境样品中超痕量有机氯农药分析测试的需求,但其昂贵的造价,限值了推广应用。

3.2 主要国家、地区及国际组织相关分析方法研究

3.2.1 国际材料试验协会(ASTM) D4861-11 方法

该方法全称为空气中农药和多氯联苯的采集和分析技术选择的标准规程,方法以 1~5L/min 流速将空气样品采集于玻璃纤维滤膜(或石英纤维滤膜)与 PUF 采样筒(或 PUF 和其他吸附剂组成的混合采样筒)串联的采样装置,本方法是美国环保局 TO-10A 的基础。样品采用乙醚/正己烷(5+95,V/V)提取,根据不同化合物特性,采用气相色谱 ECD/NPD/FPD/MS 进行分析。方法主要用于居住区、公共建筑和办公室的非职业暴露监测,并可以用于室外空气中农药和多氯联苯的监测和个人呼吸暴露监测,此外农药也经常在室内外施用、用于公共建筑和商业建筑杀虫,PCB 等其他半挥发性有机物和会存在于室内空气,本方法也适用于此类监测。样品采集 4~24h,可以检测 0.001~50μg/m³ 农药和多氯联苯。

3.2.2 美国环保局 TO-4A 方法

美国环保局《空气中有毒有机化合物测定方法汇编》第二版(epa/625/r-96/010b)中的汇编方法 TO-4A 方法,即大容量 PUF 采样气相色谱/多检测器法测定环境空气中的农药和多氯联苯。该方法为 TO-4 和美国 ASTM 方法 D4861-94 结合的补充修订版。环境样品以 225L/min 流速采集于玻璃纤维滤膜(或石英纤维滤膜)与 PUF 采样简串联的采样装置,采样时间达 24 小时,采样体积可以达到 350m³,滤膜和树脂上吸附的有机氯农药和多氯联苯用 1+9 的乙醚/正己烷回流提取。必要时采用氧化铝、酸性硅胶、弗罗里硅土柱色谱净化有机磷农药、氨基甲酸酯农药、多氯联苯和有机氯农药中的干扰物,浓缩定容后采用气相色谱/ECD/NPD/FPD/MS 进行分析。

方法中规定用 GC/ECD 方法测定环境空气中的有机氯农药和 Aroclor1242、1254、1260,采用 GC/MS-SIM(气质联机-选择离子扫描法)测定有机氯农药和 Aroclor1242、1254、1260。

3.2.3 美国环保局 TO-10A 方法

美国环保局《空气中有毒有机化合物测定方法汇编》第二版中(epa/625/r-96/010b)的汇编方法 TO-10A 方法,即小容量 PUF 采样气相色谱/多检测器法测定环境空气中的农药和多氯联苯。该方法为 TO-10 与美国 ASTM 方法 D4861-94 结合的补充修订版。样品以 1~5L/min 流速采集于玻璃纤维滤膜(或石英纤维滤膜) 与 PUF 采样筒串联的采样装置,滤膜和 PUF 上吸附的农药和多氯联苯用乙醚/正己烷

(5/95) 回流提取。分析过程与 TO-4A 类似。

3.2.3 其他测定方法

EPA 680 采用气相色谱质谱联机法测定水、土壤/底泥中的有机氯农药和多氯联苯,质谱的扫描方式既可以采用全扫描方式(SCAN),也可以采用选择离子扫描方式(SIM);方法采用 13 C₁₂-DDT、 13 C₁₂-BHC 做为回收率指示物,屈-D₁₂、菲-D₁₀ 做为内标,方法给出了仪器的测定限,全扫描测定有机氯农药为 2~4ng/ μ l,选择离子法低 5 倍。

EPA 8081A 采用气相色谱法测定固体、液体样品中萃取的 28 种有机氯农药;该方法样品的提取和净化分别参考美国 EPA3500 系列和 3600 系列;方法采用双柱进行分析,给出了双柱的色谱条件;基于单柱分析鉴定的结果需要使用另一根色谱柱或其他定性分析技术加以确认。本方法仅为技术导则,方法中的验证数据仅供参考,不作为必须满足的质控标准。

3.3 国内相关分析方法研究

国内还没有相关的标准分析方法分析环境空气中的有机氯农药和多氯联苯,上述方法对于我国环境空气中有机氯农药的监测分析方法的标准化具有借鉴作用。

4、标准制修订的基本原则和技术路线

4.1 标准制订的基本原则

- (1) 环境监测分析方法标准的制定符合《国家环境保护标准制修订工作管理办法》和《环境检测分析方法标准制定技术导则》(HJ/T168)的要求。
- (2)方法的检出限和测定范围必须满足相关环保标准和环保工作的要求。
- (3)制定的方法必须准确可靠,能够满足各项方法特性指标的要求。
- (4)制定的方法具有普遍适用性、可操作型,易于推广使用。

4.2 标准制修订的技术路线

4.2.1 标准的技术方案

通过查阅中国学术期刊网络出版总库、中国重要会议论全文数据库,检索了国际标准化组织、美国等标准分析方法,确定我国环境空气中有机氯农药和多氯联苯标准分析方法的总体思路。

- (1)查阅国外标准——美国方法 环境空气中有机氯农药和多氯联苯的测定方法标准 (TO-4A), 查阅国内期刊及学术论文。
- (2) 确定方法框架:
- 采样方式——采样装置由装有玻璃纤维滤膜(或石英纤维滤膜)的采样夹、PUF 采样筒和采样器组成,大流量连续采样。

- 样品提取——提取溶剂、提取时间、提取效率
- 样品净化——浓硫酸净化、florisil 净化、硅胶柱净化
- 仪器分析——**气相色谱法**

<u>23</u> 种有机氯农药——α-六六六、 γ -六六六、 β -六六六、δ-六六六、七氯、艾氏剂、环氧七氯、 γ -氯丹、α-氯丹、硫丹 I、4,4'-DDE、狄氏剂、异狄氏剂、4,4'-DDD、硫丹 II、4,4'-DDT、异狄氏醛、硫丹硫酸盐、甲氧 DDT、异狄氏酮、六氯苯、2,4'-DDT、灭蚁灵。

- (3) 编写开题报告,形成标准草案,组织专家论证。
- (4)按方法框架要求进行条件试验,修改完善标准文本草案,进行方法验证,形成标准征求意见稿。

4.2.2 标准的应用前景

有机氯农药由于半衰期长、在环境中稳定性高、易积累于生物体内,广泛存在于环境中。一些有机 氯农药已被确认为对哺乳动物具有致癌性作用和对人体健康有危害。大多数有机氯农药属于《斯德哥尔 摩公约》中规定的持久性有机物,因此测定大气中有机氯农药对保护人体健康和研究污染物的迁移、转 化规律具有重要的意义。另外,随着近年来国家对环境保护工作的重视,多数市级以上监测机构都具有 较强的监测能力,只需再采购采样设备就可以开展分析。因此,本标准方法将会在环境监测工作中有非 常好的发展前景。

4.2.3 技术路线

技术路线详见图 2。

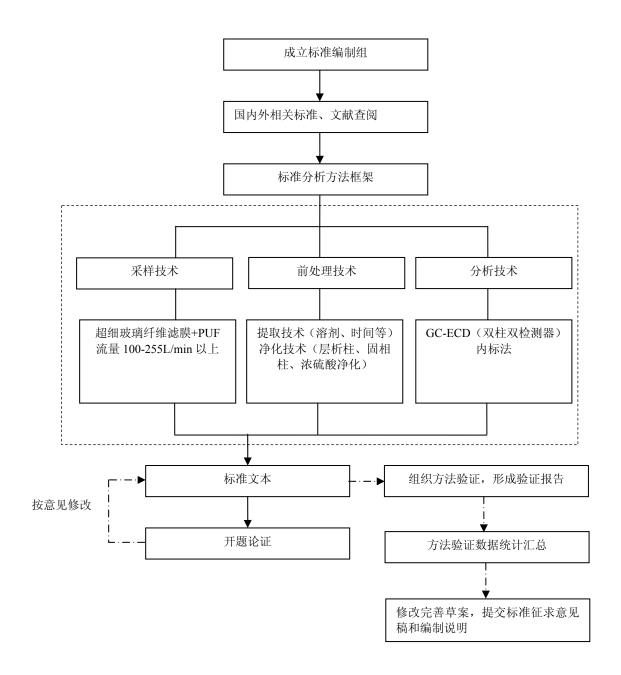


图2 技术路线图

5、方法研究报告

5.1 方法研究目标

5.1.1 方法的适用范围

本标准规定了环境空气中气相和颗粒物中的 α -六六六、 γ -六六六、 β -六六六、 δ -六六六、七氯、艾氏剂、环氧七氯、 γ -氯丹、 α -氯丹、硫丹 I、4,4'-DDE、狄氏剂、异狄氏剂、4,4'-DDD、2,4'-DDT、硫丹 II、4,4'-DDT、异狄氏醛、硫丹硫酸盐、甲氧 DDT、异狄氏酮、六氯苯、灭蚁灵二十三种有机氯农药的 气相色谱法。。目标化合物包括了历史上主要施用的 23 种有机氯农药。

标准的内容包括适用范围、方法原理、干扰和消除、实验材料和试剂、仪器和设备、样品采集和保存、样品预处理与分析、结果的表示、质量控制和质量保证等几方面的内容,研究的主要目的在于建立 既适应当前环境保护工作的需要,又满足当前实验室仪器设备要求的标准分析方法。

其他种类的有机氯农药经过方法性能测试后可以参照执行。

表4 目标化合物一览表

	表4 目标化合物	一览表		
化合物名称	英文名称	化学登记号	分子式	分子量
	替代物			
2,4,5,6-四氯间二甲苯	2,4,5,6-Tetrachloro-m-xylene	877-09-8	C ₈ H ₆ Cl ₄	243.9
十氯联苯	Decachlorobiphenyl	2051-24-3	$C_{12}Cl_{10}$	498.6
	内标			
1-溴-4-硝基苯	1-Bromo-4-nitrobenzene	586-78-7	C ₆ H ₄ BrNO ₂	202.0
	有机氯农药			
六氯苯	Hexachlorobenzene	118-74-1	C ₆ Cl ₆	284.7
α-ВНС	alpha-BHC	319-84-6	C ₆ H ₆ Cl ₆	290.8
γ-ВНС	gamma-BHC (Lindane)	58-89-9	C ₆ H ₆ Cl ₆	290.8
β-ВНС	beta-BHC	319-85-7	C ₆ H ₆ Cl ₆	290.8
七氯	heptachlor	76-44-8	C ₁₀ H ₅ Cl ₇	373.3
δ-ВНС	delta-BHC	319-86-8	C ₆ H ₆ Cl ₆	290.8
艾氏剂	Aldrin	309-00-2	C ₁₂ H ₈ Cl ₆	364.9
环氧七氯	Heptachlor epoxide B	1024-57-3	C ₁₀ H ₅ Cl ₇ O	373.3
γ-氯丹	gamma-Chlordane	5103-74-2	$C_{10}H_6C_{18}$	409.7
α-氯丹	alpha-Chlordane	5103-71-9	$C_{10}H_6Cl_8$	409.7
硫丹 I	Endosulfan I	959-98-8	C ₉ H ₆ Cl ₆ O ₃ S	406.9
4,4'-DDE	4,4'-DDE	72-55-9	C1 ₄ H ₈ Cl ₄	318.0
狄氏剂	Dieldrin	60-57-1	C ₁₂ H ₈ Cl ₆ O	380.9
异狄氏	Endrin	72-20-8	C ₁₂ H ₈ Cl ₆ O	380.9
4,4'-DDD	4,4'-DDD	72-54-8	$C_{14}H_{10}Cl_4$	320.0
硫丹 II	Endosulfan II	33213-65-9	$C_9H_6Cl_6O_3S$	406.9
2,4'-DDT	2,4'-DDT	789-02-6	C ₁₄ H ₉ Cl ₅	354.4
4,4'-DDT	4,4'-DDT	50-29-3	C ₁₄ H ₉ Cl ₅	354.4
异狄氏醛	Endrin aldehyde	7421-93-4	C ₁₂ H ₈ Cl ₆ O	380.9
硫丹硫酸盐	Endosulfan sulfate	1031-07-8	C ₉ H ₆ Cl ₆ O ₄ S	422.9
甲氧 DDT	Mthoxychlor	72-43-5	C ₁₆ H ₁₅ Cl ₃ O ₂	345.6
异狄氏酮	Endrin ketone	53494-70-9	C ₁₂ H ₉ Cl ₅ O	346.4
灭蚁灵	Mirex	2385-85-5	C ₁₀ HC ₁₂	545.5

5.1.2 方法拟达到的性能指标

文献报道显示,环境空气中有机氯农药的含量通常为 pg/m^3 以上,一般为几百 pg/m^3 ,方法的检出限要求能够达到此要求。

方法的实验室间和实验室内相对标准偏差小于 20%,加标回收率 60%~130%,个别组分控制 50%~150%,例如六氯苯、六六六、艾氏剂、异狄氏醛、DDT等。

5.2 方法原理

环境空气中气相和颗粒物中的有机氯农药分别收集于聚氨酯泡沫(PUF)采样筒与玻璃(或石英)纤维滤膜,采样筒和滤膜用1+9(V/V)乙醚/正己烷的混合溶剂提取,提取液经过浓缩,弗罗里硅土柱、硅胶柱、浓硫酸等方式净化后,进行气相色谱电子捕获检测器检测,内标法定量。

5.3 试剂和材料

- 5.3.1 有机试剂: 丙酮(C_3H_6O) 、正己烷(C_6H_{14}) 、二氯甲烷(CH_2Cl_2)均为农残级试剂,乙醚(C_2H_6O) 为色谱纯试剂,防止带来干扰。
- 5.3.2 无水硫酸钠(Na₂SO₄),分析纯或优级纯。如有干扰物,在马福炉中于 450℃烘烤 2h,稍冷,贮于 磨口玻璃瓶中密封保存。
- 5.3.3 浓硫酸 (H₂SO₄): 优级纯, 用于样品净化。
- 5.3.4 样品提取液: 1+9(V/V) 乙醚/正己烷混合溶液,临用现配。
- 5.3.5 淋洗液:
- 5.3.5.1 淋洗液 1: 1+9 (V/V) 丙酮/正己烷混合溶液, 临用现配。
- 5.3.5.2 淋洗液 2: 24+76 (V/V) 二氯甲烷/正己烷混合溶液, 临用现配。
- 5.3.5.3 淋洗液 3: 5+5 (V/V) 乙醚/正己烷混合溶液, 临用现配。
- 5.3.6 硫酸钠溶液: ρ=20g/L

于烧杯中称取 20.0g 硫酸钠,加蒸馏水溶解并转移至 1000ml 容量瓶中。此溶液用于浓硫酸净化后有机层清洗至中性。

5.3.7 异狄氏剂和 p,p'-DDT 标准溶液, 100μg/L (正己烷溶剂), 用于检查仪器的系统状态。

5.3.8 替代物

直接购买市售有证标准溶液,含四氯间甲苯(TCX)和十氯联苯(DCBP)混合液或单标溶液,浓度 $\rho=500\mu g/ml$ 。由于环境样品中干扰很多,本标准测定组分多达 23 种,为防止各种干扰,替代物选择在目标化合物出峰开始前和结束后。

取 1.0ml 上述溶液于 10ml 容量瓶中,用正己烷稀释至刻度,配制替代物中间溶液 (ρ=50μg/ml)。

取 0.10ml 替代物中间溶液于 50ml 容量瓶中,用正己烷稀释至刻度,配制替代物使用溶液 (ρ=1.00mg/L)。每个样品前处理之前加入 0.200ml。

5.3.9 内标溶液

直接购买市售有证标准溶液,含 1-溴-2-硝基苯,浓度 ρ=1000mg/L。由于环境样品中干扰很多,本标准测定组分多达 23 种,为防止各种干扰,本标准所选内标在目标化合物之前出峰。

取上述 1.00ml, 用正己烷稀释至 10.00ml, 配制分析内标中间液 (ρ=100mg/L)。

取分析内标中间液 1.00ml,用正己烷稀释至 10ml,配制分析内标使用液($\rho=10$ mg/L)。每个样品浓缩至 1.0ml 加入分析内标使用液 10μL。

- 5.3.10 有机氯农药标准溶液
- 5.3.10.1 有机氯农药标准贮备液: ρ=2000mg/L

直接购买市售有证标准溶液,包括 α-六六六、 γ -六六六、 β -六六六、δ-六六六、七氯、艾氏剂、环氧七氯、 γ -氯丹、α-氯丹、硫丹 I、4,4'-DDE、狄氏剂、异狄氏剂、4,4'-DDD、硫丹 II、4,4'-DDT、异狄氏醛、硫丹硫酸盐、甲氧 DDT、异狄氏酮二十种有机氯农药的混合溶液,浓度 2000mg/L。六氯苯、2,4'-DDT、灭蚁灵单标,浓度 2000mg/L。亦可将 23 种有机氯农药配制为混合溶液。4℃以下、密封、避光保存,或参考生产商推荐的保存条件。

5.3.10.2 有机氯农药标准中间液: ρ=40mg/L

取有机氯农药标准贮备液 1.00ml, 用正己烷稀释至 50.0ml, 混匀。

5.3.10.3 有机氯农药标准使用液: ρ=1.0mg/L

分别取有机氯农药中间液 250μl 和替代物中间液 200μl, 用正己烷稀释至 10.00ml, 混匀。此溶液用于配制标准系列,需要将替代物配入其中。

注 1: 所有溶液均转移至具有聚四氟乙烯衬垫的螺口玻璃瓶内,密封,4℃以下冷藏。

- 5.3.11 净化柱
- 5.3.11.1 弗罗里硅土固相柱: 1000mg/6ml, 亦可根据杂质含量选择适宜容量的商业化固相柱。
- 5.3.11.2 硅胶固相柱: 1000mg/6ml, 亦可根据杂质含量选择适宜容量的商业化固相柱。

不同容量、不同参加生产的固相柱均需进行条件试验后再使用。

5.3.12 采样材料

根据采样流量选择相应规格的超细玻璃纤维滤膜(或石英膜)。滤膜对 0.3μm 标准粒子的截留效率 不低于 99.7%, 在气流速度为 0.45m/s 时,单张滤膜阻力不大于 3.5 KPa, 在此气流速度下,抽取经高效 过滤器净化的空气 5h,每平方厘米的失重不大于 0.012mg。使用前在马福炉中于 400℃加热 5h 以上,冷却,用铝箔包好,保存于滤膜盒,保证滤膜在采样前和采样后不受沾污,并在采样前处于平展不受折状态。

聚氨酯泡沫(PUF): 聚醚型,密度为 22~25 mg/cm³,切割成长 70mm,直径为 45~65mm 的圆柱形(直径根据玻璃采样筒的规格确定)。首次使用前用蒸馏水清洗,沥干水分,用丙酮清洗三次,放入索氏提取器,依次用丙酮回流提取 16h,1+9 (V/V)的乙醚/正己烷混合溶液回流提取 16h,更换新鲜的乙醚/正己烷混合溶液回流 2~3次,每次回流提取 16h 然后取出,将溶剂挥干或氮气吹干(亦可采用室温下真空干燥 2~3h)。用铝箔包好放于合适的容器内密封保存。必要时,用丙酮使 PUF 回型,再挥干溶剂备用。可购买市售经预处理的 PUF。

亦可使用快速溶剂萃取(ASE)、自动索氏提取等其他方式提取。

5.3.13 玻璃棉: 使用前用二氯甲烷回流提取,挥去溶剂,密封保存,用于装填层析柱。

5.4 仪器和设备

5.4.1 分析设备

气相色谱仪:气相色谱具有分流/不分流进样口,具有程序升温功能,具有双Ni⁶³电子捕获检测器。色谱柱:石英毛细管色谱柱,30m(长)×0.25mm(内径)×0.25μm(膜厚),固定相为(5%-苯基)甲基聚硅氧烷与(35%-苯基)甲基聚硅氧烷或(14%氰丙基-苯基)甲基聚硅氧烷,或其它等效色谱柱。5.4.2 采样装置

采样装置由采样头、采样泵和流量计组成。

5.4.2.1 大流量采样器:具有自动累计流量,自动定时,断电再启功能。正常采样情况下,大流量采样器负载可以达到 225L/min 以上,能够将环境空气抽吸到玻璃纤维滤膜(或石英滤膜)及其后面的吸附套筒内的吸附材料上,在连续 24h 期间至少能够采集到 324m³ 的空气样品。

5.4.2.2 采样头

采样头由滤膜夹和吸附剂套筒两部分组成,详见图 3。采样头配备不同的切割器可采集 TSP、 PM_{10} 或 PM_{25} 颗粒物。

滤膜夹包括滤膜固定架、滤膜、不锈钢筛网组成。滤膜固定架由金属材料制成,并能够通过一个不 锈钢筛网支撑架固定玻璃纤维/石英滤膜。

吸附剂套筒外筒由聚四氟乙烯或不锈钢材料制成,内部装有玻璃采样筒,玻璃采样筒底部由玻璃筛板或不锈钢筛网支持,玻璃采样筒内为 PUF。玻璃采样筒密封固定在滤膜架和抽气泵之间。采样时吸附剂套筒进气口与滤膜固定架连接,出气口与抽气泵端连接。采样后玻璃采样筒也可直接放入索氏提取器中回流提取。采样前、后将采样筒用铝箔纸包好,放于保存盒内,保证玻璃采样筒及其里面的吸附剂在采样前和采样后不受沾污。

图 3 采样头示意图

5.4.2.3 流量计

可设定不低于 225 L/min 流量,流量计在采样泵正常使用状态下按照标准流量计进行校准。

- 5.4.3 索氏提取器: 500 ml、1000ml、 2000 ml。亦可采用其他性能相当的提取装置。
- 5.4.4 恒温水浴: 控制温度精度在±5℃。
- 5.4.5 旋转蒸发装置,也可使用 K-D 浓缩器、有机样品浓缩仪等性能相当的设备。
- 5.4.6 固相萃取净化装置。
- 5.4.7 玻璃层析柱: 长 350mm, 内径 20mm, 底部具 PTFE 活塞的玻璃柱。

5.5 样品

5.5.1 样品的采集

现场采样前要对采样器的流量进行校正,依次安装好滤膜夹、吸附剂套筒,连接于采样器,调节采样流量,开始采样。采样结束后打开采样头上的滤膜夹,用镊子轻轻取下滤膜,采样面向里对折,从吸附剂套筒中取出采样筒,与对折的滤膜一同用铝箔纸包好,放入原来的盒中密封。采样后进行流量校正。

实验室采用气相色谱-质谱联机法对采样过程加标回收率进行了测定,在一定空间同时放置四台环境空气采样装置,其中一台采集环境空气本底,另外三台在玻璃纤维滤膜上滴加有机氯农药标准溶液,加标量为 250ng,放置 1h,待溶剂挥发后,启动采样泵。连续采集环境空气 18 小时(243m³),共采集 2 个批次。分别测定颗粒物和 PUF 中有机氯农药的含量,计算回收率。测定结果表明: (1)除六氯苯、艾氏剂、异狄氏醛、硫丹 II、灭蚁灵以外,有机氯农药的回收率都超过 70%,平均回收率 82.4%。大多数有机氯农药在 PUF 检出,只有异狄氏醛、硫丹硫酸盐、异狄氏酮、甲氧 DDT 主要在滤膜上检出。详细结果参见表 5。

表 5 有机氯农药的采样过程加标回收率

		采样回	回收率(加标量 250ng)			
序号	化合物名称(或 IUPAC 编号)	颗粒物相回收率 (%)	气相回收率(%)	总回收率(%)		
1	α-デンジ	未检出	83.8	83.8		
2	六氯苯	未检出	52.1	52.1		
3	β-六六六	未检出	94.3	94.3		
4	γ-六六六	未检出	85.8	85.8		
5	δ-六六六	未检出	103.5	103.5		
6	七氯	未检出	80.5	80.5		
7	艾氏剂	未检出	49.1	49.1		
8	环氧七氯	未检出	97.3	97.3		
9	γ-氯丹	未检出	90.3	90.3		
10	硫丹 I	未检出	70.3	70.3		
11	α-氯丹	未检出	72.1	72.1		
12	4,4'-DDE	未检出	79.3	79.3		
13	狄氏剂	未检出	101.3	101.3		
14	异狄氏剂	未检出	102.1	102.1		

		采样回收率(加标量 250ng)					
序号	化合物名称(或 IUPAC 编号)	颗粒物相回收率 (%)	气相回收率(%)	总回收率(%)			
15	硫丹 II	未检出	63.1	63.1			
16	4,4'-DDD	4.5	90.9	95.4			
17	2,4'-DDT	未检出	78.5	78.5			
18	异狄氏醛	50.8	未检出	50.8			
19	硫丹硫酸盐	89.1	7.4	96.5			
20	4,4'-DDT	未检出	92.9	92.9			
21	异狄氏酮	99.0	2.2	101			
22	甲氧 DDT	86.5	未检出	86.5			
23	灭蚁灵	7.6	61.7	69.3			

5.5.2 样品的保存

美国 EPA 方法 TO-4A 中规定样品采集后避光常温保存,24h 内进行提取;或 4℃以下冷藏,采样 7日内完成提取;制备完毕的样品 4℃以下冷藏保存,提取后 40 日内完成气质联机分析。

本方法参考上述标准,规定样品采集后避光常温保存,24h内进行提取,否则应避光于4℃以下冷藏,7日内提取完毕。制备完毕的样品4℃以下冷藏保存,30日内完成气质联机分析。

5.5.3 试样的制备

5.5.3.1 样品提取方法

将玻璃纤维滤膜和玻璃采样筒放在索氏提取器中(如果玻璃采样筒内的 PUF 转移到索氏提取器中,用一定量乙醚/正己烷提取液(1+9)冲洗玻璃采样筒,冲洗液转移到底瓶内),在 PUF 上加上 250μl替代物使用液(0.2μg),加入适量乙醚/正己烷提取液回流提取 16h以上,每小时回流 3~4 次。提取完毕,冷却至室温,取出底瓶,提取器及接口处,将清洗液一并转移入底瓶。加入少许无水硫酸钠至硫酸钠颗粒可自由流动,放置 30min 脱水干燥。

提取溶剂最好不选择二氯甲烷,主要由于二氯甲烷对各种有机物均有较高的提取效率,会带来更多的基质干扰;另外二氯甲烷对环境危害也较大。同时美国 EPA 在 2000 年对 TO-13A 的解释中也提到不能用二氯甲烷提取 PUF。

只要能达到本标准规定质量控制要求,亦可采用其他样品提取方式。自动索氏提取采用上述提取液回流提取 40 个循环即可达到满意的结果。快速溶剂萃取提取的参考条件:温度 100℃,压力 1500~2000Psi,静态萃取时间 5min,淋洗体积 60%池体积,氮气吹扫 60s,静态萃取次数 2 次。

5.5.3.2 样品浓缩方法

提取液转移入浓缩瓶中,温度控制在 45℃以下、氦气流下浓缩至 5.0ml 以下,加入 5-10ml 正己烷,继续浓缩,将溶剂完全转为正己烷,浓缩至 1.0ml 以下,如不需净化,加入 10.0μl 内标,定容至 1.0ml, 装瓶以备分析。浓缩时温度超过 50℃或者氦气流过大都会导致相对低沸点的化合物挥发损失。

5.5.3.3 样品的净化方法

(1) 弗罗里硅土固相柱净化

取1g弗罗里硅土固相萃取柱,依次用10ml丙酮、10ml正己烷冲洗柱床,待柱内充满正己烷后关闭流速控制阀浸润5min,打开控制阀,弃去流出液。在溶剂流干之前,关闭控制阀。将浓缩后的样品提取溶液加入到柱内,打开控制阀,接收流出液于浓缩瓶中。用约1ml的正己烷洗涤装样品的浓缩瓶两次,将洗涤液转移至固相柱,如果单独分析有机氯农药或有机氯农药和多氯联苯都进行分析,用10.0ml丙酮/正己烷淋洗液(1+9,V/V)淋洗,待淋洗液流过柱床后关闭流速控制阀,浸润5min,再打开控制阀,继续接收淋洗液至完全流出。有机氯农药的平均净化回收率为86.6%,净化回收率详见表6。

表 6 有机氯农药不同净化方法的回收率

表 6 有机氯农药不同净化方法的回收率											
			弗罗里硅土固定		浓硫酸净化		基质样品浓荷				
序号	化合物名称	加标量	回收率(n=	6)	(n=6))	收率(n	=6)			
	101 13 111	(ng)	净化回收率(%)	CV%	净化回收率 (%)	CV%	净化回收率 (%)	CV%			
1	α-六六六	300	79.0	4.0	89.3	3.5	92.5	2.2			
2	六氯苯	300	81.1	3.5	89.6	3.0	91.5	1.9			
3	β-六六六	300	81.6	3.1	91.7	2.5	93.9	1.2			
4	γ-六六六	300	79.7	3.5	90.2	3.0	93.4	2.0			
5	δ-六六六	300	82.4	2.6	93.5	2.4	96.2	1.6			
6	七氯	300	85.2	3.8	92.7	2.9	92.7	2.1			
7	艾氏剂	300	85.6	3.9	84.4	3.3	81.7	9.1			
8	环氧七氯	300	84.6	3.8	78.2	3.4	83.2	6.1			
9	γ-氯丹	300	83.6	3.6	94.9	2.1	94.8	1.5			
10	硫丹 I	300	86.8	3.4	25.6	19.0	42.9	55.3			
11	α-氯丹	300	84.1	3.9	94.8	2.0	94.8	1.5			
12	4,4'-DDE	300	88.4	3.5	98.6	2.7	96.2	2.4			
13	狄氏剂	300	87.7	3.6	0.0		0.1				
14	异狄氏剂	300	100	4.0	0.0		0.0				
15	硫丹 II	300	91.1	5.7	4.7	17.5	7.2	51.9			
16	4,4'-DDD	300	91.0	5.8	104	1.2	101	2.3			
17	2,4'-DDT	300	90.9	5.8	107	2.5	97.0	14.0			
18	异狄氏醛	300	85.0	2.7	10.8		5.2				
19	硫丹硫酸盐	300	89.7	1.8	63.7	5.6	61.4	26.9			
20	4,4'-DDT	300	86.8	4.1	100	2.3	98.8	1.8			
21	异狄氏酮	300	88.3	1.9	32.3	14.8	36.9	35.1			
22	甲氧 DDT	300	91.2	3.0	1.3		0.9				
23	灭蚁灵	300	87.3	2.5	101	3.2	96.5	3.1			

使用不同的淋洗液可将多氯联苯和部分有机氯农药分离。依次加入3ml正己烷淋洗,接收流出液作为第一级洗脱液;加入5ml二氯甲烷/正己烷淋洗液(24+76),接收流出液为第二级洗脱液;加入5ml 丙酮/正己烷淋洗液(1+9),接收流出液为第三级洗脱液。第一级洗脱液中含有全部多氯联苯、大部分α-六六六、大部分γ-六六六、部分β-六六六、七氯、艾氏剂、部分环氧七氯、部分γ-氯丹、大部分α-氯

丹、4,4'-DDE、部分4,4'-DDD、大部分4,4'-DDT;第二级洗脱液中含部分α-六六六、β-六六六、γ-六六六、δ-六六六、环氧七氯、部分γ-氯丹、小部分α-氯丹、狄氏剂、异狄氏剂、硫丹II、部分4,4'-DDD、部分异狄氏醛、部分硫丹硫酸盐、少部分4,4'-DDT、部分异狄氏酮、甲氧DDT;第三级洗脱液含有部分异狄氏醛、部分硫丹硫酸盐、少部分4,4'-DDT、少部分异狄氏酮、少部分甲氧DDT。表7列出了弗罗里硅土固相柱净化不同洗脱液洗脱、气相色谱分析的结果。

此结果与美国EPA SW-846方法3620C给出的结果不完全一致,我们在实验中也发现弗罗里硅土柱的规格和品牌的结果也不一致,因此我们得出结论:不同品牌、不同规格的小柱,在三个级分中的回收率不完全一致,有机氯农药和多氯联苯也不能完全分流,因此未将此方法写入标准,但并不限制使用,采用本方法分离有机氯农药和多氯联苯之前,需要进行条件实验,以便获得最佳的分离效果。

表 7	弗罗里硅土固相柱净化不同洗脱液洗脱的回收率
1X /	"为夕毛性上凹作往往化小凹流就被流流的凹状伞

化合物名称	加标量(ng)	级分	1	级分2	2	级分3		
化音初石桥	加你里(ng)	平均回收率%	RSD%	平均回收率%	RSD%	平均回收率%	RSD%	
α-六六六	640	97.2	8	4.2	19			
β-六六六	640			103	5			
γ-六六六	640	59.4	11	36.8	8			
δ-六六六	640			105	3			
七氯	640	96.7	8					
艾氏剂	640	103	8					
环氧七氯 B	640			103	4			
γ-氯丹	640	58.3	8	33.8	9			
硫丹 I	640			105	4			
α-氯丹	640	89.0	5	6.1	21			
4,4'-DDE	640	104	5	1.0	36			
狄氏剂	640			103	6			
异狄氏剂	640			106	3			
硫丹 II	640			79.6	14	28.2	23	
4,4'-ddd	640	39.6	12	58.8	12			
异狄氏醛	640			18.4	20	63.8	9	
硫丹硫酸盐	640			40.3	17	60.3	15	
4,4'-DDT	640	70.2	12	5.8	15	6.9	15	
异狄氏酮	640			57.9	8	35.2	19	
甲氧 DDT	640			104	10			
十氯联苯	640	95.3	11					

(2) 硅胶固相柱净化

取1g硅胶固相柱,加入5ml正己烷冲洗柱床,待柱内充满正己烷后关闭流速控制阀浸润5min,打开控制阀,弃去流出液。待正己烷液面高于吸附床1mm时关闭控制阀。将浓缩后的样品提取溶液转移到柱内,打开控制阀,接收流出液于浓缩瓶中。控制流速小于2ml/min,吸附柱床不能流干,将1ml的正己

烷洗涤浓缩瓶的洗涤液转移至固相柱,用5ml正己烷洗脱,待淋洗液流过柱床后关闭流速控制阀,浸润1min,再打开控制阀,继续接收流出液至液面到达吸附柱床表面,关闭控制阀,此部分作为第一级洗脱液。更换接收瓶,向固相柱内加入5ml乙醚/正己烷淋洗液(50+50,V/V),打开控制阀,收集流出液作为第二级洗脱液。流出液浓缩至1.0ml以下,加入10.0μl内标,定容至1.0ml,装瓶以备分析。

第一级洗脱液中包括全部的多氯联苯、六氯苯、七氯、艾氏剂、4,4'-DDE、2,4'-DDT、4,4'-DDT、 灭蚁灵,少部分α-氯丹;第二级洗脱液中含有大部分α-氯丹和其他15种有机氯农药。详见表8。

		表 8	硅胶固相柱净化的回	收率(n=6)		
	(1) 人物 勾毛	to to the	第一级洗	脱液	第二级洗	脱液
序号	万亏 化音初石M	化合物名称 加标量(ng)	平均回收率%	RSD%	平均回收率%	RSD%
1	α-六六六	1000			104	1.4
2	六氯苯	1000	105	2.6		
3	β-六六六	1000			102	1.8
4	γ-六六六	1000			104	2.1
5	δ-六六六	1000			102	1.8
6	七氯	1000	97.6	1.6		
7	艾氏剂	1000	99.3	1.3		
8	环氧七氯	1000			101	2.9
9	γ-氯丹	1000			100	2.5
10	硫丹 I	1000			104	3.2
11	α-氯丹	1000	17.2	11.3	79.9	0.3
12	4,4'-DDE	1000	102	7.3		
13	狄氏剂	1000			102	5.0
14	异狄氏剂	1000			117	4.2
15	硫丹 II	1000			101	6.6
16	4,4'-DDD	1000			97.5	8.7
17	2,4'-DDT	1000	93.1	4.7		
18	异狄氏醛	1000			58.4	7.8
19	硫丹硫酸盐	1000			99.7	10.7
20	4,4'-DDT	1000	90.8	7.8		
21	异狄氏酮	1000			96.1	9.3
22	甲氧 DDT	1000			98.0	7.0
23	灭蚁灵	1000	99.5	7.3		

注:样品定容为5.0ml。

(3) 弗罗里硅土层析柱净化

玻璃层析柱底部填充玻璃棉或玻璃纤维滤膜,以正己烷湿法将活化的20g弗罗里硅土装入层析柱内,上部加入1~2cm高无水硫酸钠。柱子填好后首先用60ml正己烷淋洗,正己烷流出后关闭旋塞,平衡5min,再将正己烷全部放掉(控制流速2ml/min左右),待正己烷液面接近硫酸钠层时关闭旋塞,将浓缩至1.0ml的样品提取液全部转移至层析柱,用1ml正己烷冲洗样品瓶,一并转移,打开旋塞,接收流出液,液面接近硫酸钠层时,依次加入200ml 6+94(V/V)乙醚/正己烷淋洗液(多氯联苯和大部分农药在此馏分中)、15+85(V/V)200ml含乙醚/正己烷溶液淋洗液、5+5(V/V)200ml乙醚/正己烷淋洗液、200ml1+9(V/V)丙酮/正己烷淋洗液进行淋洗,淋洗液中主要含有硫丹II、异狄氏醛、硫丹硫酸盐、异狄氏酮等。详见表9。流出液在氮气流下浓缩至1.0ml以下,加入10.0μl内标,定容至1.0ml,装瓶以备分析。

实验结果表明,本实验室加标300ng的测定结果与美国EPA SW-846系列方法3620C中的结果不完全相同。因此,受固相柱和层析柱规格、弗罗里硅土用量的影响,洗脱剂的用量不同,各实验室的操作方式不完全一致等因素影响,各馏分中有机氯农药和多氯联苯的回收率不完全相同,各实验室在每批弗罗里硅土用于净化前,都要进行实验,确定监测的化合物所在的馏分。本净化方法消耗的试剂量较大,有机氯农药和多氯联苯也没有明显的分离效果,大多数有机氯农药和全部的多氯联苯均在乙醚/正己烷(6+94)洗脱液中,因此未将此方法写入标准,各实验室可根据自身情况确定条件再使用。

表9 弗罗里硅土层析柱净化的回收率

	化合物名称	ド 							
序号			洗脱方式 2						
		乙醚/正己烷 (6+94)	乙醚/正己烷 (15+85)	乙醚/正己烷 (5+5)	丙酮/正己烷 (1+9)	总计 (%)	丙酮/正己烷 (1+9)		
1	α-六六六	81.5		0.6		82.1	71.1		
2	六氯苯	81.5	1.4	1.4	2.8	87.0	43.3		
3	β-六六六	86.6			1.7	88.3	74.7		
4	γ-六六六	84.2	0.5			84.7	75.7		
5	δ-六六六	86.3	5.4		3.3	95.0	82.2		
6	七氯	80.2	1.1	3.0	1.8	86.2	70.7		
7	艾氏剂	85.5				85.5	75.0		
8	环氧七氯	88.3		0.4	1.0	89.7	79.3		
9	γ-氯丹	89.8			0.4	90.2	78.2		
10	硫丹 I	90.4	0.8	0.8	1.4	93.5	79.5		
11	α-氯丹	89.6			1.2	90.8	75.8		
12	4,4'-DDE	93.7	0.5		2.8	97.0	70.0		
13	狄氏剂	60.7	27.0	0.3	1.8	89.8	82.3		
14	异狄氏剂	89.1	3.5		3.9	96.4	120		
15	硫丹 II			81.1	5.0	86.2	90.5		
16	4,4'-DDD	88.1		3.8	3.5	95.3	79.9		
17	2,4'-DDT	85.9			3.0	88.8	79.3		
18	异狄氏醛	1.6		28.9	4.1	34.6	44.8		
19	硫丹硫酸盐	2.8		36.9	52.2	91.9	95.1		
20	4,4'-DDT	82.3			4.9	87.2	71.8		
21	异狄氏酮	2.9	1.7	97.2	2.8	105	96.8		
22	甲氧 DDT	91.2				91.2	102		
23	灭蚁灵	83.8			0.4	84.2	86.1		

(4) 浓硫酸净化

样品提取液浓缩至2.0ml~5.0ml,转移到10ml浓缩瓶中,加入1.0~2.0ml浓硫酸(5.6),充分混合均匀,静置,相分离后,硫酸层转移、弃去,再加入浓硫酸净化至硫酸层无色。

将有机层转移至另一个干净浓缩瓶中,瓶内的硫酸层加入1.0~2.0ml正己烷,充分混合均匀,静置,将正己烷与先前正己烷合并。

正己烷净化液加入硫酸钠水溶液(5.8)5.0ml,混合均匀,静置,弃去水层,有机层加入少许无水硫酸钠,转移至另外的浓缩瓶中,浓缩至1.0ml备用。

浓硫酸净化能够很好改善样品的基质干扰,但是可造成狄氏剂、异狄氏剂、硫丹II、异狄氏醛和甲

氧DDT分解,基本无回收,硫丹I、硫丹硫酸盐、异狄氏酮的回收率也很低,在实际应用中要注意,根据目标化合物的具体情况选择合适的方法。浓硫酸净化回收率的结果详见表6。

表6中列出的实际样品和空白样品加入有机氯农药标准溶液的浓硫酸净化的回收率,二者没有显著性差异。

5.6 分析步骤

- 5.6.1 仪器条件
- 5.6.1.1 推荐的气相色谱条件

选用(7.1)中的两根不同极性的色谱柱

进样口温度: 250℃; 进样方式: 不分流进样,在时间 0.75min 分流,分流比 60:1。程序升温: 50℃(1min)—^{25℃/min}→180℃(2min)—^{5℃/min}→280℃(5min)。载气: 氮气,流量: 1.0ml/min。进样量:

2.0µl 。电子捕获检测器(ECD)温度,300℃

5.6.1.2 程序升温条件的优化过程

设定以下7个色谱条件进行有机氯农药的分离。

色谱条件 1: 110℃(2min)—8℃/min→280℃(5 min)

色谱条件 2: 60 ℃ (1 min) — 8℃/min → 280℃ (5 min)

色谱条件 3: 50°C(1min)—25°C/min →110°C(2min)—8°C/min →280°C(5min)

色谱条件 4: 50°C(1min)—25°C/min →200°C (1min)—5°C/min →280°C(5min)

色谱条件 5: 50°C(1min)—25°C/min →200°C (1min)—5°C/min →230°C(2min)—5°C/min →280°C

色谱条件 6: 60°C(1min)—25°C/min→180°C (2min)—4°C/min→280°C(5min)

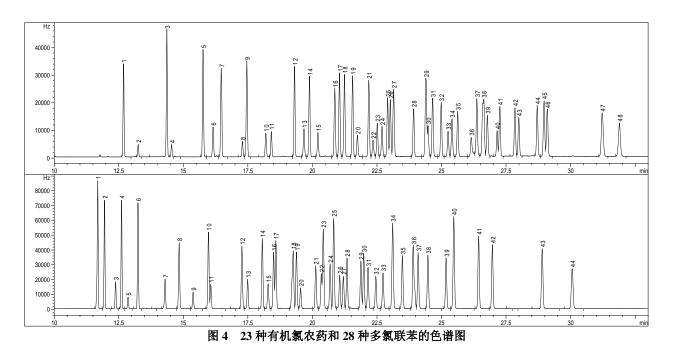
色谱条件 7: 50°C(1min)—25°C/min→180°C (2min)—5°C/min→280°C(5min)

实验结果显示:

色谱条件 1: 出峰时间较早,内标及替代物峰型不好; DB-5 色谱柱不能将硫丹硫酸盐和 4,4'-DDT 分离。

色谱条件 2: DB-5 色谱柱不能将硫丹硫酸盐和 4.4'-DDT 分离。

色谱条件3:与上述条件相比无改善


色谱条件 4: DB-5 色谱柱上硫丹硫酸盐和 4.4'-DDT 不完全分离。

色谱条件 5: DB-1701P 色谱柱上甲氧 DDT 和硫丹硫酸盐分离变差,DB-5 色谱柱上分离无明显改善。

色谱条件 6: DB-1701P 色谱柱上甲氧 DDT 和硫丹硫酸盐不分离。

色谱条件 7: DB-5 上硫丹 I 和 α -氯丹分离改善,硫丹硫酸盐和 4,4'-DDT 基本分离; DB-1701P 色谱柱上甲氧 DDT 和硫丹硫酸盐能够不完全分离。

采用色谱条件 7 分流 23 种有机氯农药和 28 种多氯联苯共计 51 种组分,DB-1701P 能够分离出 48 种,DB-5 色谱柱能够分离出 44 种有机物,详见图 4。经过综合考虑推荐色谱条件 7 为本方法程序升温条件。不同的仪器、色谱柱批次分离情况会有微小差别,利用本方法时,可根据具体情况优化色谱参数,获得最佳分离效果。

上图 DB-1701 柱峰序: 1、六氯苯; 2、PCB8; 3、α-六六六; 4、PCB18; 5、γ-六六六; 6、PCB28; 7、七氯; 8、PCB52; 9、艾氏剂; 10、PCB44; 11、β-六六六; 12、δ-六六六; 13、PCB66; 14、环氧七氯; 15、PCB101; 16、硫丹 I; 17、γ-氯丹; 18、α-氯丹; 19、4,4'-DDE; 20、PCB81; 21、狄氏剂; 22、PCB77; 23、PCB123; 24、PCB118; 25、异狄氏剂; 26、PCB114; 27、2,4'-DDT+PCB153; 28、PCB105; 29、4,4'-DDD+PCB138; 30、PCB187; 31、硫丹 II; 32、4,4'-DDT; 33、PCB126; 34、PCB167; 35、PCB128; 36、异狄氏醛; 37、PCB156; 38、PCB180+PCB157; 39、灭蚁灵; 40、硫丹硫酸盐; 41、甲氧 DDT; 42、PCB170; 43、PCB169; 44、异狄氏酮; 45、PCB189; 46、PCB195; 47、PCB206; 48、PCB209;

下图 DB-5 柱峰序: 1、α-六六六+PCB8; 2、 六氯苯; 3、β-六六六; 4、γ-六六六; 5、PCB18; 6、δ-六六六; 7、 PCB28; 8、七氯; 9、PCB52; 10、艾氏剂; 11、PCB44; 12、环氧七氯; 13、PCB66; 14、γ-氯丹; 15、PCB101; 16、硫丹 I; 17、α-氯丹; 18、PCB81+4,4'-DDE; 19、狄氏剂; 20、PCB77; 21、异狄氏剂; 22、PCB123; 23、硫丹 II+PCB118; 24、4,4'-DDD; 25、2,4'-DDT+PCB114; 26、异狄氏醛; 27、PCB153; 28、PCB105; 29、硫丹硫酸盐; 30、4,4'-DDT; 31、PCB138; 32、PCB126; 33、PCB187; 34、PCB128+167; 35、异狄氏酮; 36、甲氧 DDT+PCB156; 37、PCB157; 38、PCB180; 39、PCB169; 40、灭蚁灵+PCB170; 41、PCB189; 42、PCB195; 43、PCB206; 44、PCB209;

5.6.2 农药分析过程中仪器的性能检查

气相色谱系统如果出现活性点,可造成农药异狄氏剂和p,p'-DDT分解,因此,测定有机氯农药时,每日分析前对仪器系统进行检查,注入异狄氏剂和p,p'-DDT(6.10),测定化合物的降解程度,如果除检测到上述化合物以外,还检测到异狄氏醛、异狄氏酮和p,p'-DDE、p,p'-DDD,则表明异狄氏剂和p,p'-DDT发生了分解,如果单一样品的降解量≥20%或二者的降解量之和≥30%,需要对进样口和色谱柱头进行维护。系统检查合格后方可进行有机氯农药的测定。

5.6.3 化合物的定性定量方法

依据目标化合物的绝对保留时间进行定性,曲线各点中对应化合物的绝对保留时间与标准曲线中间保留时间相比变化不超过±0.05min;样品中对应化合物的绝对保留时间与曲线核查点相比变化不超过±0.05min。

目标化合物在双柱均检出,视为检出,只在其中一根色谱柱检出,视为该组分未检出。

根据峰面积,采用内标法定量。如果双柱的定量结果的相对偏差(RPD)小于 40%,报告双柱结果的平均值。如果双柱的定量结果的相对偏差大于 40%,报告双柱结果中的低值。

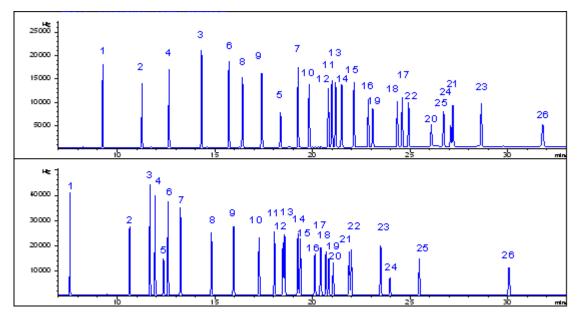


图 5 有机氯农药标准谱图

图中上图色谱柱固定液为(14%氰丙基-苯基)甲基聚硅氧烷下图色谱柱固定液为(5%-苯基)甲基聚硅氧烷

图中峰序: 1、BNB(内标); 2、TCX(回收率指示物); 3、 α -六六六; 4、六氯苯; 5、 β -六六六; 6、 γ -六六六; 7、 δ -六六六; 8、七氯; 9、艾氏剂; 10、环氧七氯; 11、 γ -氯丹; 12、硫丹 I; 13、 α -氯丹; 14、4,4'-DDE; 15、狄氏剂; 16、异狄氏剂; 17、硫丹 II; 18、4,4'-DDD; 19、2,4'-DDT; 20、异狄氏醛; 21、硫丹硫酸盐; 22、4,4'-DDT; 23、异狄氏酮; 24、甲氧 DDT; 25、灭蚁灵; 26、十氯联苯(回收率指示物)

5.6.4 校准曲线的绘制:

5.6.4.1 有机氯农药标准系列的配制

在 6 个 2ml 棕色样品瓶中,使用有机氯农药标准使用液 (1.00mg/L),配制浓度分别为 20、50、100、200、300 μ g/L 标准系列,每个瓶中 1.00ml 标液准确加入 10 μ l 内标使用液 (10.0mgL)。

5.6.4.2 平均相对响应因子的计算方法

按(5.6.1)的色谱条件进行分析,得到不同浓度的标准溶液的色谱图,按公式(1)、公式(2)计算不同浓度的待测物的相对响应因子及平均相对响应因子,并计算相对标准偏差,各浓度化合物相对响应因子的相对标准偏差应不大于 20%。

相对响应因子(RRF_i)按式(1)计算:

$$RRF_i = \frac{A_s \rho_{is}}{A_{is} \rho_{s}} \tag{1}$$

平均相对响应因子 (\overline{RRF}) 按式 (2) 计算:

$$\overline{RRF_i} = \frac{\sum_{i=1}^{n} RRF_i}{n} \dots (2)$$

式中:

RRF;——平均相对响应因子

As ——标准溶液中待测化合物的峰面积

Ais——内标化合物的峰面积

ρ。——标准溶液中目标化合物的浓度(μg/L)

 ho_{is} ——内标化合物的浓度(μ g/L)

5.6.4.3 标准曲线的建立

以($\frac{A_s \rho_{is}}{A_{is}}$)为纵坐标,标准溶液浓度(ρ_s)为横坐标,用最小二乘法建立标准曲线,标准曲线

的相关系数≥0.995。若标准曲线的相关系数小于 0.995, 也可采用非线性拟合曲线进行校准, 但是应至少采用 6 个浓度点。

5.6.5 样品的测定

标准曲线绘制完毕或曲线核查完成后,将处理好的并放至室温的样品注入气相色谱仪,按照仪器参考条件(9.1)进行样品测定。根据目标化合物和内标的峰面积计算样品中目标化合物的浓度。

当样品浓度超出标准曲线的线性范围时,将样品稀释至校准曲线线性范围内,适当补加内标量保持与标准曲线一致,再进行测定。

当样品中内标峰受到干扰,峰面积异常时,使用外标法定量。

5.7 结果计算与表示

5.7.1 结果计算

样品中有机氯农药的质量浓度(ρ)按式(3)计算。

$$\rho = \frac{\rho_i \times V \times F}{V_s} \qquad (3)$$

$$\rho_i = \frac{\rho_{is} \times A_i}{RRF_i \times A_{ir}} \tag{4}$$

式中:

ho——样品中目标化合物的质量浓度, ng/m^3 ;

 ρ ——从平均相对响应因子或标准曲线得到目标化合物的质量浓度,ng/ml;

 A_i ——目标化合物的峰面积;

V ——样品的浓缩体积, ml;

 $V_{\rm s}$ ——标准状况下的采样总体积, ${\rm m}^3$:

F ——稀释因子(如果目标化合物的浓度超出曲线,进行稀释)。

5.7.2 结果表示

当环境空气样品大于等于 1.00ng/m³ 时,结果保留三位有效数字;小于 1.00ng/m³ 时,结果保留至

小数点后二位。

5.8 质量控制指标

5.8.1 仪器的性能检查

分析有机氯农药前注入p,p'-DDT或异狄氏剂,如果单一样品的降解量≥20%或二者的降解量之和≥30%,必须进行系统维护。此指标参考了美国EPA 8270C和8081B的相关规定。

5.8.2 空白

每批样品至少测定一个运输空白和实验室空白试样,空白值不得大于方法的检出限。

5.8.3 标准曲线核查

每个工作日至少测定 1 次曲线中间浓度的标准溶液,如果测定结果与实际浓度值相对偏差应 <+20%,则初始标准曲线仍能继续使用,否则,应查找原因或重新绘制新的标准曲线。

5.8.4 分析内标

标准曲线核查的内标与曲线中间点的内标比较,样品的内标与同批标准曲线核查的内标比较,峰面积变化-50%~100%;

5.8.5 分析替代物的控制范围

方法验证显示:四氯间二甲苯和十氯联苯的加标回收率分别为(76.0±11.3)%和(92.7±13.2)%本标准规定:四氯间二甲苯和十氯联苯回收率控制范围应在 50%~110%和 70%~130%。也可以采用其他适宜的化合物做回收率指示物,控制标准参照执行,不得低于 50%。

5.8.6 空白加标

方法验证显示,空白加标 50ng、100ng、300ng 有机氯农药,平均回收率为 88.2%,异狄氏醛>60%。 美国 ASTM D4861-11 标准规定样品回收率为 65%~125%,由于目标化合物不同,且在标准表 X2.2 中显示有组分提取效率为 57.0%和 65.5%。本标准规定空白加标的回收率一般控制在 70%~130%(六氯苯、艾氏剂、DDT、异狄氏醛除外),但不得超出 50%~150%范围。

6、 方法验证

6.1 方法验证方案

参加验证的实验室及验证人员情况见表 10。

从事分析工作 单位名称 性别 所学专业 姓名 年龄 职务或职称 年限 江苏省环境监测中心 章勇 男 33 工程师 化学 10 男 河南省环境监测中心 王伟 朱广钦 辽宁省环境监测中心 女 30 工程师 分析化学 4

表 10 参加验证单位及验证人员一览表

大连市环境监测中心	张吉喆	男	29	工程师	环境科学	8
鞍山市环境监测中心站	田靖	男	37	总工程师	应用化学	14
沈阳市环保局铁西分局环 境监测站	付丹丹	女	33	工程师	环境监测	10

按照 HJ/T168-2010《环境监测 分析方法标准制修订技术导则》的规定,组织 6 家实验室进行验 证。根据影响方法的精密度和准确度的主要因素和数理统计学的要求,编制方法验证方案,确定样品类 型、含量水平、分析人员、分析设备、分析时间及重复测试次数等,验证单位按要求完成方法验证报告。 验证内容包括:

- 检出限:空白采样套筒加标 25ng 有机氯农药,按照样品前处理所述方法进行提取、弗罗里硅 土小柱净化和上机分析,七次测定结果的标准偏差与99%置信水平的tr值之积为方法检出限。
- 精密度: 空白采样套筒加标 50ng、100ng 和 300ng 有机氯农药,按照样品前处理所述方法进行 提取、弗罗里硅土小柱净化和上机分析,每个实验室平行测定6次。
- 准确度: 四台大气采样器平行采集 4 个样品,采集二天为一组,供 1 家实验室 1 个加标水平验 证使用,每天选用其中1个样品为本底,另外3个在样品提取前加标。按照样品前处理所述方 法进行提取、弗罗里硅土小柱净化和上机分析。每个实验室加标 100ng 和 300ng 有机氯农药, 计算6次加标结果。

6.2 方法验证过程

6.2.1 验证工作过程

组织验证实验室开会,详细介绍方法过程,以及方法验证方案的主要内容,对个别实验室人员进行 培训;发放验证统一样品,开展协作验证;汇总实验数据,给出验证结论。

6.2.2 结论

6.2.2.1 检出限和测定下限

当以 225L/min 采集环境空气 24h 时,有机氯农药的检出限为 0.03~0.06ng/m³, 测定下限 0.12~ 0.24ng/m³。有机氯农药的检出限详见表 11。

表 11.有机氯农约万法检出限测定下限结果表					
序号	化合物名称	方法检出量 (ng)	方法测定量下 限(ng)	方法检出限 (ng/m³)	方法测定下限 (ng/m³)
1	α-六六六	11.0	44.0	0.04	0.16
2	六氯苯	12.9	51.6	0.04	0.16
3	β-六六六	18.3	73.2	0.06	0.24
4	γ-六六六	13.6	54.4	0.05	0.20
5	δ-六六六	17.8	71.2	0.06	0.24

序号	化合物名称	方法检出量 (ng)	方法测定量下 限(ng)	方法检出限 (ng/m³)	方法测定下限 (ng/m³)
6	七氯	16.9	67.6	0.06	0.24
7	艾氏剂	13	52.0	0.05	0.20
8	环氧七氯	14.1	56.4	0.05	0.20
9	γ-氯丹	6.7	26.8	0.03	0.12
10	硫丹 I	9.3	37.2	0.03	0.12
11	α-氯丹	14.3	57.2	0.05	0.20
12	4,4'-DDE	8.4	33.6	0.03	0.12
13	狄氏剂	7.1	28.4	0.03	0.12
14	异狄氏剂	16.4	65.6	0.06	0.24
15	硫丹 II	12.3	49.2	0.04	0.16
16	4,4'-DDD	15.2	60.8	0.05	0.20
17	2,4'-DDT	9.2	36.8	0.03	0.12
18	异狄氏醛	18.3	73.2	0.06	0.24
19	硫丹硫酸盐	16	64.0	0.05	0.20
20	4,4'-DDT	11.1	44.4	0.04	0.16
21	异狄氏酮	11.8	47.2	0.04	0.16
22	甲氧 DDT	14.2	56.8	0.05	0.20
23	灭蚁灵	8.1	32.4	0.03	0.12

6.2.2.2 有机氯农药测定的精密度

六家实验室分别测定加标量为 50ng、100ng 和 300ng 的有机氯农药样品(n=6),实验室内相对标准偏差为 1.4%~29.6%、2.4%~17.5%、1.1%~19.3%,实验室间相对标准偏差为 3.7%~11.3%、2.9%~12.4%、1.5%~10.1%; 重复限分别为 5.4 ng ~17.2ng、11.1 ng ~25.3ng、23.3 ng ~90.6ng,再现性限分别为 6.9 ng ~20.6ng、17.6 ng ~32.3ng、13.5~96.0ng。详见表 12.6

6.2.2.3 有机氯农药测定的准确度

四台大气采样器平行采集 4 个样品,采集二天为一组,供 1 家实验室验证使用,每天选用其中 1 个样品为本底,另外 3 个在样品提取前加标。经过六家实验室验证,实际样品加标 100 和 300ng 的有机 氯农药,加标回收率分别为 60.1%~106%、55.1%~106%。加标回收率的最终值详见表 13。

表 12 有机氯农药方法精密度验证结果 测定均值 化合物名称 实验室间 RSD (%) 实验室内 RSD(%) 重复性限 r (ng) 再现性限 R (ng) (ng) 40.0 3.9 ~ 16.3 10.6 9.9 14.9 α-六六六 78.0 $2.5 \sim 14.1$ 12.4 19.0 32.3 204 23.3 41.0 $3.2 \sim 4.6$ 6.1 HBC 36.3 $7.6 \sim 29.6$ 6.8 16.4 16.5 87.7 25.4 $2.4\sim17.5$ 6.9 20.7

化合物名称	测定均值 (ng)	实验室内 RSD(%)	实验室间 RSD(%)	重复性限 r (ng)	再现性限 R (ng)
	234	2.6 ~ 6.2	3.7	26.4	34.3
	53.7	9.8 ~ 17.6	8.8	17.2	20.6
β-六六六	91.7	5.1 ~ 10.1	7.6	17.7	25.0
	266	3.3 ~ 8.2	3.3	47.7	49.9
	42.7	6.3 ~ 18.3	5.6	16.1	16.2
γ-六六六	79.1	5.4 ~ 9.2	6.2	16.3	20.3
	209	2.9 ~ 5.8	5.9	26.2	42.2
	32.4	4.3 ~ 17.9	5.7	10.2	10.7
δ - $\overrightarrow{\wedge}\overrightarrow{\wedge}\overrightarrow{\wedge}$	79.2	4.7 ~ 12.9	9.9	18.6	27.8
	232	1.2 ~ 6.5	10.1	26.5	70.1
	48.4	4.8 ~ 19.4	8.7	13.7	17.2
七氯	81.8	3.7 ~ 6.7	8.1	11.1	21.1
	211	3.4 ~ 9.7	6.0	33.3	46.9
	38.8	2.2 ~ 20.0	6.6	11.5	12.7
艾氏剂	79.7	4.1 ~ 13.2	11.1	16.2	28.9
	236	2.6 ~ 16.2	5.1	45.5	53.3
	42.4	6.6 ~ 19.0	11.3	16.0	19.8
环氧七氯	74.7	5.9 ~ 13.6	8.6	20.4	26.1
	236	5.2 ~ 7.1	2.5	38.9	39.3
	38.8	2.9 ~ 7.1	4.4	5.4	6.9
γ-氯丹	78.6	4.9 ~ 9.3	6.6	14.1	19.5
	235	3.2 ~ 6.9	3.5	29.0	34.9
	40.5	3.7 ~ 17.0	5.2	12.5	12.9
硫丹 I	78.5	3.9 ~ 16.0	9.2	18.3	26.2
	248	1.4 ~ 5.5	1.8	28.0	28.4
	39.0	3.0 ~ 19.3	5.9	10.7	11.7
α-氯丹	79.7	4.8 ~ 9.5	6.4	14.0	19.1
	239	2.6 ~ 6.5	3.3	28.0	33.8
	44.7	1.4 ~ 13.5	7.2	10.5	13.1
4,4'-DDE	87.4	3.8 ~ 11.2	3.1	17.4	17.6
	267	2.3 ~ 11.4	3.8	54.3	57.0
	45.1	4.0 ~ 17.5	5.7	13.0	13.9
狄氏剂	89.7	5.6 ~ 13.2	8.3	24.1	30.3
	252	2.4 ~ 7.4	4.5	31.5	42.9
	54.1	6.1 ~12.9	4.8	14.2	14.9
异狄氏剂	92.5	6.1 ~9.7	3.7	19.5	20.2
	250	3.2 ~6.7	2.4	31.9	33.4
	50.6	4.2 ~9.5	4.7	8.8	10.4
硫丹 II	102	4.5 ~10.4	4.5	20.4	22.6
	279	2.5 ~4.9	2.9	28.0	34.2
	55.0	3.8 ~9.4	5.2	11.0	12.8
4,4'-DDD	105	4.5 ~7.8	2.9	18.2	18.7
	301	2.4 ~5.5	1.5	29.8	30.1
2,4'-DDT	57.5	5.1 ~15.5	7.4	15.6	18.6
	96.3	4.2 ~14.5	5.4	22.1	24.9

化合物名称	测定均值 (ng)	实验室内 RSD (%)	实验室间 RSD(%)	重复性限 r (ng)	再现性限 R (ng)
	264	2.4 ~8.8	2.8	40.3	42.4
	31.1	13.4 ~19.5	7.9	14.2	14.7
异狄氏醛	67.1	8.1 ~16.2	7.0	21.8	23.8
	213	11.9 ~19.3	8.2	90.6	96.0
	54.7	7.3 ~14.9	6.7	17.0	18.6
硫丹硫酸盐	112	4.9 ~~13.5	5.3	25.3	28.4
	298	3.3 ~7.8	2.1	39.3	39.8
	51.6	4.9 ~15.9	5.7	13.5	14.8
4,4'-DDT	98.5	3.2 ~9.5	3.4	18.1	19.0
	284	1.1 ~7.1	3.0	42.2	45.2
	45.5	5.4 ~11.3	3.7	10.2	10.4
异狄氏酮	109	4.0 ~12.4	5.8	21.0	26.1
	305	1.1 ~5.7	1.5	24.9	26.1
	53.2	4.5 ~13.6	4.3	12.8	13.3
甲氧 DDT	113	3.7 ~13.5	4.7	23.0	25.7
	286	1.5 ~5.3	2.6	25.7	31.4
	45.9	5.7 ~7.9	7.0	9.0	12.2
灭蚁灵	98.4	3.3 ~ 14.5	6.5	25.3	29.2
	284	5.4 ~10.3	5.2	62.4	70.5

表 13 有机氯农药方法准确度验证结果

化合物名称	加标量 ng	回收率范围(%)	回收率最终结果(%)	
	100	71.9 ~ 92.0	80.9±15.7	
α-六六六	300	65.8 ~ 77.0	71.9±7.7	
НВС	100	63.8 ~ 83.0	73.0±16.2	
пвс	300	62.8 ~ 87.6	71.0±18.1	
β- 六六六	100	68.0 ~ 89.3	74.3±15.9	
p-/\/\\	300	77.7 ~ 88.9	82.6±9.4	
γ- <u>六</u> 六六	100	71.1 ~ 89.3	79.9±13.5	
γ-/\/\	300	75.9 ~ 86.4	81.7±10.2	
2 2,2,2	100	72.9 ~ 86.9	82.3±11.2	
δ-六六六	300	63.9 ~ 79.5	70.6±10.6	
七氯	100	67. 8 ~ 96.5	83.5±19.7	
心 就	300	81.8 ~ 98.4	89.0±13.8	
# 戊.刻	100	78.9 ~ 97.0	89.2±13.0	
艾氏剂	300	80.0 ~ 96.3	87.3±12.3	
T/写 1/写	100	70.2 ~ 102	87.8±24.4	
环氧七氯	300	73.2 ~ 102	86.0±20.9	
写 凡	100	81.4 ~ 101	88.8±13.4	
γ-氯丹	300	77.5 ~ 94.8	84.8±14.9	
硫丹 I	100	74.5 ~ 88.9	84.9±10.6	

化合物名称	加标量 ng	回收率范围(%)	回收率最终结果(%)
	300	65.0 ~ 90.9	77.1±20.9
与国	100	82.1 ~ 95.0	89.2±9.4
α-氯丹	300	75.7 ~ 98.7	84.3±15.7
4,4'-DDE	100	77.8 ~ 94.3	86.5±15.0
4,4 -DDE	300	73.9 ~ 93.5	81.0±14.9
	100	80.2 ~ 94.4	87.3±10.9
 次 区 列	300	75.0 ~ 91.9	82.9±12.5
已处氏刻	100	88.8 ~ 103	94.9±10.0
异狄氏剂	300	85.2 ~ 104	93.8±16.4
硫丹 II	100	80.9 ~ 106	92.5±18.4
物成大于 11	300	82.6 ~ 101	89.5±12.9
4 4! DDD	100	77.2 ~ 90.4	84.1±9.9
4,4'-DDD	300	78.8 ~ 96.8	90.3±12.9
2 41 DDT	100	84.3 ~ 97.5	91.4±10.7
2,4'-DDT	300	83.0 ~ 93.6	87.9±9.4
异狄氏醛	100	60.1 ~ 83.7	70.1±16.9
开狄氏胜	300	55.1 ~ 95.3	72.6±29.7
硫丹硫酸盐	100	83.3 ~ 103	90.7±14.7
9礼月9礼段 益.	300	79.7 ~ 103	94.9±17.6
4,4'-DDT	100	70.2 ~ 90.4	82.6±15.6
4,4 -DD1	300	79.8 ~ 87.4	84.2±7.1
已处 心脏	100	80.8 ~ 106	97.3±18.1
异狄氏酮	300	82.7 ~ 95.6	90.3±9.8
田毎 DDT	100	78.2 ~ 105	96.9±20.0
甲氧 DDT	300	87.4 ~ 106	94.2±13.3
五州目	100	83.7 ~ 99.3	93.0±11.1
灭蚁灵	300	78.8 ~103	92.3±22.5

6.2.3 《方法验证总结报告》见附件。

7、与开题报告的差异说明

- 7.1 原标准分为《环境空气 气相和颗粒物中有机氯农药的测定 气相色谱法》、《环境空气 气相和颗粒物中多氯联苯单体的测定 气相色谱法》和《环境空气 气相和颗粒物中多氯联苯单体的测定 气相色谱法》三项标准。
- 7.2 净化方法中增加了硅胶柱净化方法。
- 7.3 未对采样标进行要求,原因是本标准测定组分较多, 氘代有机氯农药和有机氯农药无法分离,且《环

境空气 半挥发性有机物采样技术导则》已经发布,对采样效率提出明确控制方法。

8、标准实施建议

无

9、参考文献

- 1. 李军. 珠江有机氯农药污染的区域地球化学研究. 广州: 中国科学院广州地球化学研究所博士学位论文, 2005
- 2. 韩文亚等. 我国持久性有机污染物类废弃杀虫剂库存的清单调查方法学研究. 农业环境科学学报. 2007, 26(5): 94-98.
- 3. 安太成, 陈嘉鑫等. 珠三角地区 POPs 农药的污染现状及控制对策。生态环境, 2005, 14(6): 981-986.
 - 4. 史晓乐等. 浅谈环境中有机氯农药的残留现状[J]. 中国科技论文在线, 2007, 2(6):453-456
- 5. Jun He, Rajasekhar Balasubramanian. Semi-volatile organic compounds (SVOCs) in ambient air and rainwater in a tropical environment: Concentrations and temporal and seasonal trendsChemosphere, 2010,78(6): 742-751.
- 6. Babu Rajendran R, Venugopalan V K, et al. Pesticide residues in air from coastal environment, South India. Chemosphere 1999, 39(10), 1699
- 7. Bruckmann,P K,et al.The occurrence of chlorinated and other organic trace compounds in ruban air.Chemosphere 1988,17(12):2363-2380.
- 8. Ngabe B,et al.Occurrence and vapor particle partitioning og heavy organic compounds in ambient air in Brazzaville,Congo.Environmental Pollution 1992,76(2):147-156
- 9. Residual levels and identify possible sources of organochlorine pesticides in Korea atmosphereAtmospheric Environment, In Press, Corrected Proof, Available online 25 October 2010. Jin Soo Park, Sun Kyoung Shin, Woo Il Kim, Byung Hoon Kim
- 10. Atmospheric concentrations of organochlorine pesticides, polybrominated diphenyl ethers and polychloronaphthalenes in Nuuk, South-West GreenlandAtmospheric Environment, Volume 42, Issue 31, October 2008, Pages 7293-7303.Rossana Bossi, Henrik Skov, Katrin Vorkamp, Jesper Christensen, Suresh C. Rastogi, Axel Egeløy, Dorthe Petersen
- 11. Ozcan S,Aydin M E.Polycyclic aromatic hydrocarbons ,polychlorinated biphenyls and organochlorine pesticides in urban air of Konya,Turkey[J].Atmospheric Research,2009(4):715-722.
- 12. Temporal and spatial variabilities of atmospheric polychlorinated biphenyls (PCBs), organochlorine pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Canadian Arctic: Results from a decade of monitoring. Science of The Total Environment, Volume 342, Issues 1-3, 15 April 2005, Pages 119-144H. Hung, P. Blanchard, C.J. Halsall, T.F. Bidleman, G.A. Stern, P. Fellin, D.C.G. Muir, L.A. Barrie, L.M. Jantunen, P.A. Helm, J. Ma, A. Konoplev

- 13. 刘国卿等.珠江口及南海北部近海海域大气有机氯农药分布特征与来源[J]。环境科学,2008 (12):3320-3325.
- 14. Liu X,Zhu T,et al.Organochlorine Pesticides in the Air around the Taihu Lake,China[J].Environmental Science&Technology,2004(5):1368-1374.
- 15. Peter K. K. Louie, Della Wai-mei Sin. Reliminary investigation of persistent organic pollutants in ambient air in Hong Kong Original Research Article. Chemosphere, 2003, 52(9): 1397-1403.
 - 16. 仝青等.空气中有机氯农药在不同粒径颗粒物上的分布[J]. 环境化学, 2000, 19(4): 306~312.
- 17. 吴水平等.城区大气颗粒物中有机氯农药的含量与分布[J]. 环境科学研究, 2003, 16(4): 36~39.
- 18. Variations of organochlorine pesticides and polychlorinated biphenyls in atmosphere of the Tibetan Plateau: Role of the monsoon system Atmospheric Environment, Volume 44, Issues 21-22, July 2010, Pages 2518-2523.Ping Gong, Xiaoping Wang, Jiujiang Sheng, Tandong Yao
- 19. 刘国卿等.珠江口及南海北部近海海域大气有机氯农药分布特征与来源[J].环境科学,2008,29(12):3320~3325
- 20. 杨永亮等.广州不同季风期近地面大气气溶胶中 7Be 与持久性有机污染物的同步观测[J].地球化学,2011,40(1):72~82
 - 21. 梁越.南昌市大气颗粒物污染特征及其潜在危害[D]. 南昌航空大学,2010
- 22. 刘焱明等: 西安城区大气有机氯农药的污染特征及来源分析[J]. 环境科学研究,2010,23(3):266~271
- 23. XIAO PING WANG et al. Passive Air Sampling of Organochlorine Pesticides, Polychlorinated Biphenyls, and Polybrominated Diphenyl Ethers Across the Tibetan Pateau[J]. Enviro. Sci. Technol. 2010, 44:2988~2993
 - 24. 邵丁丁等.北京市春季和秋季大气中有机氯农药的调查分析[J].环境化学,2007,26(1):110~111
- 25. 李军.珠江三角洲地区大气中有机氯农药污染的区域地球化学研究[D].中国科学院广州地球化学研究所,2007
- 26. 成海容.瓦里关及青岛大气中多环芳烃和有机氯农药的初步研究[D].中国科学院广州地球化学研究所,2007
 - 27. 张干等.大气持久性有机污染物(POPs)被动采样[J]. 环境化学,2009,21(2/3):297~306
 - 28. 王俊等.珠江三角洲地区大气中有机氯农药的被动采样观测[J]. 环境化学,2007,26(3):395~398
- 29. 李娟等. GC /M S 法测定环境空气中痕量 POPs 类有机氯农药及降解产物[J]. 环境管理与技术,2008,20(6):33~36

方法验证报告

方法名称:环境空气 气相和颗粒物中有机氯农药的测定 气相色谱法

项目主编单位:	沈阳市环境监测中心站
项目负责人及职称:_	郑兴宝 工程师
通讯地址: 沈阳市沈江	可区长青街 68 号电话: <u>024-23935012</u>
报告编写人及职称:_	郑兴宝 工程师
报告日期: 2012年	1 月 20 日

按照HJ 168-2010《环境监测 分析方法标准制修订技术导则》的规定,组织6家有资质的实验室进行验证。参加验证的实验室包括:(1)江苏省环境监测中心(2)河南省环境监测中心(3)辽宁省环境监测实验中心(4)大连市环境监测中心(5)鞍山市环境监测中心站(6)沈阳市环保局铁西分局环境监测站。

1. 实验室基本情况

	附表 1 参加验证单位及验证人员一览表									
单位名称		姓名	性别	年龄	职务或职称	所学专业	从事分析工作 年限			
江苏省环境监测中	心	章勇	男	33	工程师	化学	10			
河南省环境监测中	心	王伟	男							
辽宁省环境监测中	心	朱广钦	女	30	工程师	分析化学	4			
大连市环境监测中	心	张吉喆	男	29	工程师	环境科学	8			
鞍山市环境监测中心	站	田靖	男	37	总工程师	应用化学	14			
沈阳市环保局铁西分 环境监测站	局	付丹丹	女	33	工程师	环境监测	10			
	•		附表:	2 仪器使用情	情况登记表					
仪器名称		规格型量]	仪器编号		性能状况	备注			
气相色谱仪		Aglient 76	589	US10	810024	良好				
与担免流 协		A ailant 60	OON	11010210005		白 1 7	,			

气相色谱仪	Aglient 7689	US10810024	良好	
气相色谱仪	Agilent 6890N	US10319005	良好	
气相色谱仪	GC2000	20022137	良好	
气相色谱仪	Aglient 6890N	US10412022	良好	
气相色谱仪	GC-2010	C113242330546	良好	
气相色谱仪	Agilent 6890N	US10320100	良好	

附表 3 使用试剂登记表

名称	规格	纯化处理	备注
二氯甲烷	进口色谱纯、农残级	无	
丙酮	进口色谱纯	无	
乙醚	国产色谱纯	无	
正己烷	进口色谱纯、农残级	无	
浓硫酸	优级纯	无	

2.方法检出限、测定下限汇总

附表 4 有机氯农药方法检出限测定下限汇总表

	实验室		衣 4 有 / / 泉 / / 	方法最终约		方法检出限	方法测定下
名称	女	检出量	测定量下限	检出量	测定量下限	(ng/m³)	限(ng/m³)
	1	9.8	39.1				
	2	7.4	29.8				
α-六六六	3	11.0	44.0	11.0	44.0	0.04	0.16
u-/ \/ \/ \	4	10.7	43.0	11.0	44.0	0.04	0.10
	5	4.3	17.4				
	6	9.2	36.8				
	1	10.6	42.3				
	2	10.6	42.5				
六氯苯	3	12.0	47.8	12.9	51.6	0.04	0.16
7 1210-1	4	9.4	37.5	12.,	01.0	0.0.	0.10
	5	12.9	51.6				
	6	9.6	38.3				
	1	16.8	67.1				
	2	11.2	44.9				
β-六六六	3	7.2	28.9	18.3	73.2	0.06	0.24
F / 1/ 1/ 1	4	18.3	73.2				
	5	15.9	63.5				
	6	10.6	42.3				
	1	11.1	44.4				
	2	13.6	54.5	13.6			0.20
γ-六六六	3	9.3	37.3		54.4	0.05	
	4	5.1	20.3				
	5	10.0	40.0				
	6	6.9	27.7				
	2	6.9 17.8	27.8			71.2 0.06	0.24
	3	6.0	71.4				
δ-六六六	4	9.4	37.5	17.8	71.2		
	5	15.5	62.1				
	6	5.6	22.3				
	1	6.2	24.8				
	2	16.9	67.6				
	3	4.0	16.1				
七氯	4	15.7	62.8	16.9	67.6	0.06	0.24
	5	10.9	43.5				
	6	14.1	56.5				
	1	6.8	27.0				
	2	8.8	35.2				
++- pr ->n1	3	8.6	34.3	12.0	50.0	0.05	0.20
艾氏剂	4	13.0	52.1	13.0	52.0	0.05	0.20
	5	4.3	17.4				
	6	9.9	39.7				
环氧七氯	1	10.2	40.8	14.1	56.4	0.05	0.20
	2	10.6	42.5				
	3	3.5	14.0				

	实验室	各实验室	测定结果(ng)	方法最终组	告果 (ng)	方法检出限	方法测定下
名称	编号	检出量	测定量下限	检出量	测定量下限	(ng/m^3)	限(ng/m³)
	4	3.4	13.7				
	5	8.3	33.1				
	6	14.1	56.4				
	1	5.7	22.8				
	2	4.1	16.4				
/ /	3	6.7	26.6	6.7	26.0	0.02	0.12
γ-氯丹	4	5.1	20.5	6.7	26.8	0.03	0.12
	5	6.7	26.9				
	6	5.3	21.3				
	1	9.3	37.0				
	2	5.0	19.9				
宏 同. 1	3	4.8	19.4	9.3	37.2	0.03	0.12
硫丹 I	4	7.4	29.5	9.3	37.2	0.03	0.12
	5	7.1	28.6				
	6	3.4	13.5				
	1	7.6	30.4				
	2	4.6	18.5				
α-氯丹	3	14.3	57.0	14.3	57.2	0.05	0.40
α-录()]	4	10.7	42.8	14.3	31.2	0.03	0.40
	5	5.7	22.8				
	6	11.4	45.6				
	1	6.5	26.0				
	2	4.2	16.8				
4,4'-DDE	3	7.2	28.9	8.4	33.6	0.03	0.12
4,4 -DDE	4	3.0	12.0	0.4	33.0	0.03	0.12
	5	8.4	33.5				
	6	2.2	8.7				
	1	6.6	26.4				
	2	5.3	21.3				
狄氏剂	3	7.1	28.6	7.1	28.4	0.03	0.12
2////	4	6.4	25.5	7.1	20.1	0.03	0.12
	5	6.0	24.2				
	6	6.5	26.1				
	1	11.1	44.2				
	2	16.4	65.5				
异狄氏	3	14.6	58.3	16.4	65.6	0.06	0.24
剂	4	8.0	32.1				
	5	12.0	48.0				
	6	7.7	30.9				
	1	12.3	49.3				
	2	3.5	14.1				
硫丹 II	3	6.8	27.2	12.3	49.2	0.04	0.16
	4	11.7	46.7				
	5	8.0	32.1				
4 4 5 = =	6	5.3	21.4		60.6	2.25	2.20
4,4'-DDD	1	4.6	18.5	15.2	60.8	0.05	0.20
	2	4.3	17.1				

安 验室		各实验室测定结果(ng)		方法最终约	吉果(ng)	方法检出限	方法测定下
名称	编号	检出量	测定量下限	检出量	测定量下限	(ng/m^3)	限(ng/m³)
	3	15.2	61.0				
	4	15.1	60.4				
	5	5.8	23.3				
	6	4.9	19.4				
	1	7.1	28.3				
	2	9.2	36.9				
2,4'-DDT	3	3.1	12.6	9.2	36.8	0.03	0.12
- ,. 221	4	9.0	36.2		20.0	0.02	0.12
	5	6.8	27.2				
	6	8.6	34.4				
	1	17.3	69.1				
	2	17.6	70.5				
异狄氏	3	14.1	56.3	18.3	73.2	0.06	0.24
醛	4	6.9	27.8				
	5	18.3	73.1				
	6	12.8	51.1				
	1	13.6	54.6				
ᆉᄝᆉ	2	16.0	64.0				
硫丹硫	3	4.6	18.5	16.0	64.0	0.05	0.20
酸盐	4	8.4	33.6				
-	5	15.4	61.7	-			
	6	3.5	14.1				
	2	4.8 9.2	19.1 36.7		44.4		0.16
	3	8.7				0.04	
4,4'-DDT	4	9.4	34.7 37.6	11.1			
	5	11.1	44.4				
	6	7.4	29.6				
	1	7.4	31.2				
	2	7.3	28.4				
	3	9.6	38.6				
异狄氏酮	4	8.3	33.0	11.8	47.2	0.04	0.16
	5	5.7	22.8				
	6	11.8	47.1				
	1	7.4	29.5				
	2	9.3	37.4				
m / -	3	11.2	44.8			2.25	
甲氧 DDT	4	13.9	55.6	14.2	56.8	0.05	0.20
	5	5.6	22.3				
	6	14.2	56.7				
	1	8.1	32.3				
	2	4.9	19.7				
	3	6.5	26.1	0.1	22.4	0.02	0.10
灭蚁灵	4	6.9	27.6	8.1	32.4	0.03	0.12
	5	7.6	30.5				
	6	6.2	24.7				

附表 5 有机氯农药方法检出限测定下限结果表

序号	化合物名称	方法检出量 (ng)	方法测定量 下限(ng)	方法检出限 (ng/m³)	方法测定下 限(ng/m³)
1	α-六六六	11.0	44.0	0.04	0.16
2	六氯苯	12.9	51.6	0.04	0.16
3	β-六六六	18.3	73.2	0.06	0.24
4	γ-六六六	13.6	54.4	0.05	0.20
5	δ-六六六	17.8	71.2	0.06	0.24
6	七氯	16.9	67.6	0.06	0.24
7	艾氏剂	13	52.0	0.05	0.20
8	环氧七氯	14.1	56.4	0.05	0.20
9	γ-氯丹	6.7	26.8	0.03	0.12
10	硫丹 I	9.3	37.2	0.03	0.12
11	α-氯丹	14.3	57.2	0.05	0.20
12	4,4'-DDE	8.4	33.6	0.03	0.12
13	狄氏剂	7.1	28.4	0.03	0.12
14	异狄氏剂	16.4	65.6	0.06	0.24
15	硫丹 II	12.3	49.2	0.04	0.16
16	4,4'-DDD	15.2	60.8	0.05	0.20
17	2,4'-DDT	9.2	36.8	0.03	0.12
18	异狄氏醛	18.3	73.2	0.06	0.24
19	硫丹硫酸盐	16	64.0	0.05	0.20
20	4,4'-DDT	11.1	44.4	0.04	0.16
21	异狄氏酮	11.8	47.2	0.04	0.16
22	甲氧 DDT	14.2	56.8	0.05	0.20
23	灭蚁灵	8.1	32.4	0.03	0.12

注:环境空气以 225L/min 采集 18h,样品浓缩至 1.0ml,计算环境空气样品中有机氯农药的检出限和测定下限。

结论:将 25ng 有机氯农药加于采样用 PUF,按照样品前处理所述方法进行提取、净化、分析,计算七次(n)平行测定的标准偏差(S),按公式(1)计算方法检出量(MDL),当采样体积 243m³时,计算方法的检出限和测定下限。

 $MDL=t_{(n-1,0.99)}\times S.$ (1)

式中: t——自由度为 n-1,置信度为 0.99 时的 t 分布(单侧)。当 n=7 时, $t_{(n-1,0.99)}$ 为 3.143。

气相色谱质谱法测定环境空气中的有机氯农药的检出量为 $6.7\sim18.3$ ng/lml。当以 225L/min 采集环境空气 24h 时,检出限为 $0.03\sim0.06$ ng/m³,测定下限为 $0.12\sim0.24$ ng/m³。

3.方法精密度数据汇总

附表 6 有机氯农药方法精密度数据汇总表

α-六六六

实验室号	空白加标 50ng 结果 (ng)			空白加村	空白加标 100ng 结果 (ng)			空白加标 300ng 结果 (ng)		
大 独至 5	$\frac{-}{x_i}$	Si	RSDi%	$-\frac{1}{x_i}$	Si	RSDi%	$\frac{-}{x_i}$	Si	RSDi%	
1	37.5	3.0	8.0	60.5	8.5	14.1	216	9.7	4.5	
2	37.0	2.0	5.5	76.1	7.5	9.9	213	9.8	4.6	
3	34.6	3.8	11.0	76.0	1.9	2.5	217	8.3	3.8	
4	44.3	1.7	3.9	85.7	11.7	13.7	191	8.6	4.5	
5	44.7	3.7	8.3	86.0	8.0	9.3	199	7.3	3.7	
6	42.2	6.9	16.3	83.8	3.1	3.7	191	6.1	3.2	
= x(ng)		40.0			78.0		204			
S'(ng)		4.2		9.7		12.5				
RSD'(%)	10.6		12.4		6.1					
重复性限 r(ng)	9.9			19.0		23.3				
再现性现 R(ng)		14.9			32.3		41.0			

六氯苯

实验室号	空白加	标 50ng 结果	! (ng)	空白加林	示 100ng 结身	果 (ng)	空白加标 300ng 结果 (ng)			
大型至与	_ X i	Si	RSDi%	_ X i	Si	RSDi%	_ X i	Si	RSDi%	
1	37.9	5.7	15.0	78.7	13.8	17.5	230	14.2	6.2	
2	35.9	5.6	15.6	92.9	9.9	10.6	248	8.6	3.4	
3	40.5	3.1	7.6	88.2	3.6	4.1	238	6.1	2.6	
4	34.7	10.2	29.6	95.7	8.2	8.5	226	13.7	6.0	
5	33.8	4.8	14.1	86.6	2.1	2.4	236	7.4	3.1	
6	35.0	5.7	16.2	84.3	6.8	8.1	225	6.7	3.0	
$=\frac{x(ng)}{x}$		36.3			87.7			234		
S'(ng)		2.5			6.1		8.7			
RSD'(%)		6.8			6.9			3.7		
重复性限 r(ng)	5.9			9.1			12.2			
再现性现 R(ng)		16.5			25.4			34.3		

β-六六六

实验室号	空白加	标 50ng 结果	₹ (ng)	空白加村	示 100ng 结身	果 (ng)	空白加村	示 300ng 结身	果 (ng)	
大型至与	1	Si	RSDi%	_	Si	RSDi%	_	Si	RSDi%	
1	49.7	4.9	9.8	76.3	3.9	5.1	259	21.3	8.2	
2	53.0	5.5	10.5	90.6	7.3	8.1	270	13.8	5.1	
3	47.1	4.8	10.2	96.6	9.7	10.1	272	19.3	7.1	
4	55.0	9.7	17.6	92.1	6.2	6.7	252	20.1	8.0	
5	59.3	6.1	10.3	89.4	4.3	4.8	273	9.0	3.3	
6	58.1	5.9	10.2	90.1	6.5	7.2	271	18.7	6.9	
=		53.7			89.2			266		
x(gang)		4.7			6.8			8.7		
RSD'(%)		8.8		7.6			3.3			
重复性限 r(ng)	17.2			17.7			47.7			
再现性现 R(ng)		20.6			25.0			49.9		

γ-六六六

171717										
实验室号	空白加	标 50ng 结果	(ng)	空白加村	示 100ng 结身	$\mathbb{R}(ng)$	空白加村	示 300ng 结身	$\mathbb{R}(ng)$	
安	$-\frac{1}{x_i}$	Si	RSDi%	$-\frac{1}{x_i}$	Si	RSDi%	\overline{x}_i	Si	RSDi%	
1	45.1	7.2	15.9	71.2	3.9	5.4	218	10.5	4.8	
2	40.7	5.6	13.8	80.6	7.4	9.2	226	11.0	4.9	
3	39.2	5.1	13.1	83.8	4.7	5.6	217	9.0	4.2	
4	43.4	7.9	18.3	77.3	4.5	5.8	198	11.5	5.8	
5	45.3	6.0	13.2	83.5	8.2	9.9	204	8.6	4.2	
6	42.7	2.7	6.3	83.2	6.2	7.5	195	5.6	2.9	
= $x(ng)$		42.7			79.9			209		
S'(ng)		2.4			4.9		12.4			
RSD'(%)		5.6			6.2			5.9		
重复性限 r(ng)	16.1			16.3			26.2			
再现性现 R(ng)		16.2		20.3			42.2			

δ -六六六

实验室号	空白加	标 50ng 结果	! (ng)	空白加村	示 100ng 结身	果 (ng)	空白加村	示 300ng 结身	果 (ng)	
关 型至 5	$-\frac{}{x_i}$	Si	RSDi%	$-{x_i}$	Si	RSDi%	$\frac{-}{x_i}$	Si	RSDi%	
1	31.7	4.1	13.1	71.3	4.6	6.4	208	13.5	6.5	
2	32.8	3.9	11.8	78.4	10.1	12.9	204	2.5	1.2	
3	32.6	5.8	17.9	72.8	4.6	6.3	220	15.3	7.0	
4	29.9	3.3	11.1	75.3	9.4	12.5	253	10.7	4.2	
5	35.6	3.4	9.5	86.5	6.9	8.0	252	10.1	4.0	
6	32.0	1.4	4.3	90.9	4.3	4.7	252	4.8	1.9	
=		32.4			79.2			232		
S'(ng)		1.8			7.9			23.5		
RSD'(%)		5.7			9.9			10.1		
重复性限 r(ng)	10.2			18.6			26.5			
再现性现 R(ng)		10.7			27.8			70.1		

七氯

实验室号	空白加	标 50ng 结果	! (ng)	空白加林	示 100ng 结身	果 (ng)	空白加村	示 300ng 结县	果 (ng)
关 逊至 5	_	Si	RSDi%	_	Si	RSDi%	_	Si	RSDi%
1	45.8	8.9	19.4	78.6	4.7	6.7	214	10.4	4.8
2	44.7	2.4	5.3	79.4	5.0	6.3	225	12.1	5.4
3	44.1	2.1	4.8	80.0	3.4	4.2	225	11.1	4.9
4	50.7	8.8	17.3	85.2	3.9	4.6	192	10.8	5.6
5	54.6	3.2	5.9	88.4	3.4	3.9	203	6.9	3.4
6	50.7	4.1	8.1	87.3	3.2	3.7	209	20.2	9.7
_		48.4			81.8			211	
S'(Hg)		4.2			6.6			12.7	
RSD'(%)		8.7			8.1			6.0	
重复性限 r(ng)		13.7			11.1			33.3	
再现性现 R(ng)		17.2			21.1			46.9	

艾氏剂

实验室号	空白加	标 50ng 结果	! (ng)	空白加林	示 100ng 结身	果 (ng)	空白加村	示 300ng 结身	具 (ng)	
大型至与	$-\frac{}{x_i}$	Si	RSDi%	$-\frac{1}{x_i}$	Si	RSDi%	$-\frac{}{x_i}$	Si	RSDi%	
1	42.2	8.4	20.0	63.9	4.5	7.1	248	19.8	8.0	
2	39.9	4.5	11.2	83.9	11.1	13.2	243	17.4	7.2	
3	35.9	0.8	2.2	86.0	4.8	5.6	234	6.6	2.8	
4	36.1	2.2	6.1	74.2	3.1	4.1	244	39.5	16.2	
5	40.6	7.3	17.9	84.7	7.6	9.0	226	8.6	3.8	
6	37.9	1.4	3.8	85.3	3.6	4.2	217	5.7	2.6	
= $x(ng)$		38.8			79.7			235.5		
S'(ng)		2.6			8.9		12.0			
RSD'(%)		6.6			11.1			5.1		
重复性限 r(ng)	11.5			16.2			45.5			
再现性现 R(ng)		12.7			28.9			53.3		

环氧七氯

实验室号	空白加	标 50ng 结果	! (ng)	空白加林	示 100ng 结身	果 (ng)	空白加标 300ng 结果 (ng)			
关 型至 5	$-\frac{}{x_i}$	Si	RSDi%	$\frac{-}{x_i}$	Si	RSDi%	$-\frac{}{x_i}$	Si	RSDi%	
1	38.8	4.7	12.1	69.3	5.2	7.5	243	14.3	5.9	
2	37.5	6.1	16.4	75.7	8.0	10.6	240	17.1	7.1	
3	38.3	2.5	6.6	73.6	5.7	7.7	237	13.1	5.5	
4	45.7	7.9	17.2	87.2	5.2	5.9	235	14.4	6.1	
5	45.1	8.5	19.0	78.4	10.7	13.6	232	12.7	5.5	
6	49.0	4.5	9.2	70.4 9.0 12.8			226	11.9	5.2	
= x(ng)		42.4		75.8			235.8			
S'(ng)		4.8			6.5			6.0		
RSD'(%)		11.3		8.6			2.5			
重复性限 r(ng)	16.0			20.4			38.9			
再现性现 R(ng)		19.8			26.1			39.3		

γ-氯丹

实验室号	空白加	标 50ng 结果	! (ng)	空白加林	示 100ng 结身	果 (ng)	空白加村	示 300ng 结县	果 (ng)
关 型至 5	_	Si	RSDi%	_	Si	RSDi%	_	Si	RSDi%
1	37.3	2.0	5.4	68.2	4.6	6.7	245	9.1	3.7
2	37.7	2.2	5.9	79.0	7.4	9.3	243	16.8	6.9
3	37.1	1.1	2.9	81.2	4.0	4.9	238	8.1	3.4
4	39.2	2.1	5.4	79.9	4.3	5.3	231	9.0	3.9
5	41.1	2.9	7.1	81.5	5.4	6.7	230	11.9	5.2
6	40.6	1.2	3.0	81.9	4.5	5.5	224	7.1	3.2
=		38.8			78.6			235.3	
$S^{\chi(ng)}(ng)$		1.7			5.2			8.1	
RSD'(%)		4.4			6.6			3.5	
重复性限 r(ng)		5.4			14.1			29.0	
再现性现 R(ng)		6.9			19.5			34.9	

硫丹 I

实验室号	空白加	标 50ng 结果	! (ng)	空白加村	示 100ng 结身	果 (ng)	空白加村	示 300ng 结身	果 (ng)	
安	$-\frac{}{x_i}$	Si	RSDi%	$-{x_i}$	Si	RSDi%	\overline{x}_i	Si	RSDi%	
1	43.3	7.2	16.5	69.5	4.7	6.7	253	13.8	5.5	
2	38.2	4.4	11.6	76.4	6.5	8.4	250	11.9	4.8	
3	38.0	1.4	3.7	86.2	6.6	7.7	250	3.5	1.4	
4	41.6	4.9	11.7	78.8	3.1	3.9	246	9.5	3.8	
5	40.4	6.9	17.0	72.7	4.4	6.1	246	13.4	5.4	
6	41.7	2.1	5.0	87.4	14.0	16.0	241	8.0	3.3	
= $x(ng)$		40.5			78.5			247.7		
S'(ng)		2.1			7.2		4.4			
RSD'(%)		5.2		9.2			1.8			
重复性限 r(ng)	12.5			18.3			28.0			
再现性现 R(ng)		12.9			26.2			28.4		

α-氯丹

u-3k()1											
实验室号	空白加	标 50ng 结果	₹ (ng)	空白加村	示 100ng 结县	果 (ng)	空白加标 300ng 结果 (ng)				
头 独至 5		Si	RSDi%	$-\frac{x_i}{x_i}$	Si	RSDi%	_ 	Si	RSDi%		
1	36.6	5.6	15.3	69.6	4.5	6.5	248	10.0	4.0		
2	38.0	3.6	9.5	79.7	7.6	9.5	246	16.0	6.5		
3	37.8	1.5	4.1	82.3	5.6	6.8	243	7.0	2.9		
4	38.0	7.3	19.3	82.1	4.0	4.8	234	10.0	4.3		
5	41.7	3.6	8.6	82.2	4.0	4.8	233	10.9	4.7		
6	42.2	1.3	3.0	82.5	4.3	5.2	229	6.0	2.6		
=		39.0			79.7			238.8			
S(ng)		2.3			5.1		7.9				
RSD'(%)		5.9			6.4			6.4 3.3			
重复性限 r(ng)	10.7			14.0			28.0				
再现性现 R(ng)		11.7			19.1			33.8			

4,4'-DDE

实验室号	空白加	标 50ng 结果	! (ng)	空白加林	示 100ng 结身	果 (ng)	空白加标 300ng 结果 (ng)			
大型至与	_	Si	RSDi%	_	Si	RSDi%	_	Si	RSDi%	
1	$42.3^{x_{i}}$	3.8	9.1	82.7	4.5	5.4	279	13.0	4.7	
2	41.8	4.4	10.6	90.4	8.7	9.6	268	20.6	7.7	
3	41.2	1.2	3.0	89.1	6.8	7.6	273	6.2	2.3	
4	47.7	6.4	13.5	87.2	3.3	3.8	252	28.1	11.2	
5	47.3	5.9	12.4	88.5	10.0	11.2	260	29.5	11.4	
6	47.8	0.6	1.4	86.4	4.1	4.7	273	19.2	7.0	
=		44.7			87.4			267.3		
$S^{n}(ng)$		3.2			2.7			10.0		
RSD'(%)		7.2			3.1			3.8		
重复性限 r(ng)		10.5			17.4			54.3		
再现性现 R(ng)		13.1			17.6			57.0		

狄氏剂

实验室号	空白加	标 50ng 结果	! (ng)	空白加林	示 100ng 结身	果 (ng)	空白加标 300ng 结果 (ng)			
大 孤至 5	$-\frac{}{x_i}$	Si	RSDi%	$-{x_i}$	Si	RSDi%	$-\frac{}{x_i}$	Si	RSDi%	
1	45.1	6.3	14.0	75.9	5.0	6.6	268	12.6	4.7	
2	43.7	7.6	17.5	89.8	11.9	13.2	262	19.3	7.4	
3	40.9	2.3	5.7	90.6	9.3	10.2	253	7.4	2.9	
4	46.8	4.0	8.6	89.9	5.0	5.6	246	9.5	3.9	
5	47.8	5.7	12.0	95.4	10.4	10.9	246	13.0	5.3	
6	46.6	1.9	4.0	96.8	10.2	10.5	238	5.7	2.4	
= $x(ng)$		45.1			89.7			252.0		
S'(ng)		2.6			7.4		11.3			
RSD'(%)		5.7		8.3			4.5			
重复性限 r(ng)	13.0			24.1			31.5			
再现性现 R(ng)		13.9			30.3			42.9		

异狄氏剂

实验室号	空白加	标 50ng 结果	₹ (ng)	空白加村	空白加标 100ng 结果 (ng)			空白加标 300ng 结果 (ng)		
头 独至 5	_ 	Si	RSDi%	_ _	Si	RSDi%	_ 	Si	RSDi%	
1	55.0	6.8	12.3	88.5	5.7	6.4	255	9.4	3.7	
2	57.3	3.5	6.1	93.4	7.9	8.5	253	16.9	6.7	
3	54.0	6.9	12.9	98.0	9.5	9.7	243	7.8	3.2	
4	53.7	4.9	9.1	93.9	5.7	6.1	250	9.5	3.8	
5	55.0	4.8	8.7	90.0	6.3	7.0	254	14.4	5.7	
6	49.5	3.5	7.0	91.1	6.7	7.3	241	10.3	4.3	
=		54.1		92.5			249.5			
S'(ng)	2.6			3.4			5.9			
RSD'(%)	4.8			3.7			2.4			
重复性限 r(ng)	14.2			19.5			31.9			
再现性现 R(ng)		14.9			20.2			33.4		

硫丹 II

实验室号	空白加标 50ng 结果 (ng)			空白加林	空白加标 100ng 结果 (ng)			空自加标 300ng 结果 (ng)		
关 孤至 5	_	Si	RSDi%	-	Si	RSDi%	_	Si	RSDi%	
1	49.6	4.7	9.5	9 ³ 4. ⁱ 4	4.2	4.5	2\$2	14.5	4.9	
2	50.8	2.3	4.6	102	8.9	8.6	282	11.5	4.1	
3	47.7	2.2	4.7	102	7.0	6.8	279	7.3	2.6	
4	52.2	4.6	8.9	98.2	4.5	4.5	279	12.8	4.6	
5	54.2	2.9	5.3	107	11.2	10.4	273	7.1	2.6	
6	48.8	2.1	4.2	104	8.1	7.7	268	6.8	2.5	
_		50.6		101			279			
S ^u (Hg)		2.4		4.6			8.1			
RSD'(%)	4.7			4.5			2.9			
重复性限 r(ng)	8.8			20.4			28.0			
再现性现 R(ng)	10.4			22.6			34.2			

4,4'-DDD

实验室号	空白加热	标 50ng 结果	! (ng)	空白加林	空白加标 100ng 结果 (ng)			空白加标 300ng 结果 (ng)		
大型至与	$-\frac{1}{x_i}$	Si	RSDi%	$-{x_i}$	Si	RSDi%	$\frac{-}{x_i}$	Si	RSDi%	
1	55.3	5.2	9.4	100	4.5	4.5	308	10.4	3.4	
2	57.5	4.8	8.4	104	6.7	6.5	298	16.4	5.5	
3	52.8	3.0	5.7	108	6.9	6.3	299	7.8	2.6	
4	53.8	4.6	8.5	103	4.7	4.6	304	9.8	3.2	
5	59.1	3.9	6.7	107	8.3	7.8	298	12.2	4.1	
6	51.6	2.0	3.8	108	7.9	7.3	297	7.2	2.4	
= x(ng)		55.0		104.8			300.7			
S'(ng)		2.9		3.1			4.6			
RSD'(%)	5.2		2.9		1.5					
重复性限 r(ng)	11.0			18.2			29.8			
再现性现 R(ng)		12.8			18.7			30.1		

2,4'-DDT

2,4-001										
实验室号	空白加	标 50ng 结果	$\stackrel{?}{\sim} (ng)$	空白加热	空白加标 100ng 结果 (ng)			空白加标 300ng 结果 (ng)		
安 逊至与	_ X i	Si	RSDi%	$\frac{-}{x_i}$	Si	RSDi%	_ x:	Si	RSDi%	
1	54.1	5.6	10.4	96.5	4.5	4.7	277	17.0	6.1	
2	56.9	4.2	7.3	92.0	8.4	9.1	264	20.7	7.8	
3	52.4	2.7	5.1	90.3	6.8	7.6	264	6.4	2.4	
4	60.5	9.4	15.5	105.1	4.5	4.2	264	9.8	3.7	
5	64.1	8.0	12.5	98.3	14.3	14.5	259	22.8	8.8	
6	56.7	3.5	6.2	95.8	8.8	9.2	255	9.7	3.8	
= $x(ng)$		57.5		96.3			263.9			
S'(ng)		4.3		5.2			7.5			
RSD'(%)	7.4			5.4			2.8			
重复性限 r(ng)	15.6			22.1			40.3			
再现性现 R(ng)		18.6			24.9			42.4		

异狄氏醛

实验室号	空白加	标 50ng 结果	! (ng)	空白加村	示 100ng 结身	具 (ng)	空白加标 300ng 结果 (ng)		
安 孤至 5		Si	RSDi%		Si	RSDi%	_	Si	RSDi%
1	$\frac{x_i}{31.5}$	4.8	15.4	66.8	8.1	12.2	231	27.4	11.9
2	31.3	5.9	18.9	65.5	6.5	10.0	197	28.7	14.6
3	28.2	3.8	13.4	67.1	5.5	8.2	203	25.5	12.5
4	33.5	4.9	14.5	60.3	4.9	8.1	240	42.6	17.8
5	34.0	6.6	19.5	74.9	10.6	14.1	203	39.2	19.3
6	28.4	4.5	15.9	68.2	11.0	16.2	206	30.6	14.8
=		31.1		67.1			213.3		
s(ng)		2.5		4.7			17.4		
RSD'(%)	7.9			7.0			8.2		
重复性限 r(ng)	14.2			21.8			90.6		
再现性现 R(ng)	14.7			23.8			96.0		

硫丹硫酸盐

实验室号	空白加	标 50ng 结果	₹ (ng)	空白加村	空白加标 100ng 结果 (ng)			空白加标 300ng 结果 (ng)		
安 独至与	$-\frac{}{x_i}$	Si	RSDi%	$-\frac{1}{x_i}$	Si	RSDi%	$\frac{-}{x_i}$	Si	RSDi%	
1	50.5	5.6	11.0	104.4	14.1	13.5	293	9.8	3.3	
2	52.2	3.8	7.3	118.4	10.8	9.1	300	17.3	5.8	
3	51.7	7.7	14.9	114.1	5.6	4.9	307	24.1	7.8	
4	57.6	6.7	11.6	108.8	7.0	6.5	290	9.6	3.3	
5	59.0	5.0	8.5	118.8	6.5	5.5	300	11.7	3.9	
6	57.5	7.6	13.3	108.2	10.3	9.5	301	11.8	3.9	
= x(ng)		54.7		112.1			298.5			
S'(ng)		3.7		5.9			6.2			
RSD'(%)	6.7			5.3			2.1			
重复性限 r(ng)	17.0			25.3			39.3			
再现性现 R(ng)		18.6			28.4			39.8		

4,4'-DDT

实验室号	空白加	标 50ng 结果	! (ng)	空白加林	空白加标 100ng 结果 (ng)			空白加标 300ng 结果 (ng)		
大型至与	_ 	Si	RSDi%	_ 	Si	RSDi%	_ 	Si	RSDi%	
1	49.2	6.5	13.2	93.1	3.0	3.2	291	12.5	4.3	
2	50.3	8.0	15.9	99.2	6.5	6.5	286	14.5	5.1	
3	48.6	3.6	7.4	99.3	7.2	7.2	290	20.3	7.0	
4	52.8	4.2	8.0	102.3	3.6	3.6	289	20.2	7.0	
5	56.6	4.1	7.3	101.0	9.3	9.2	280	19.9	7.1	
6	52.1	2.5	4.9	96.3	9.2	9.5	269	2.9	1.1	
$=\frac{x(ng)}$		51.6		98.5			284.1			
S'(ng)	2.9			3.4			8.4			
RSD'(%)	5.7			3.4			3.0			
重复性限 r(ng)	13.5			18.1			42.2			
再现性现 R(ng)	14.8			19.0			45.2			

异狄氏酮

开外风间				1			1			
实验室号	空白加	标 50ng 结果	$\stackrel{!}{\leftarrow} (ng)$	空白加林	空白加标 100ng 结果 (ng)			空白加标 300ng 结果 (ng)		
大 孤至 5	_	Si	RSDi%	_	Si	RSDi%	_	Si	RSDi%	
1	46.3	2.7	5.9	96.9	4.5	4.7	316	7.8	2.5	
2	45.9	3.9	8.5	108.1	12.4	11.5	309	17.7	5.7	
3	43.6	4.2	9.6	111.7	4.8	4.3	307	4.4	1.4	
4	46.2	2.5	5.4	114.6	4.6	4.0	302	8.5	2.8	
5	47.7	5.4	11.3	110.3	13.7	12.4	302	11.8	3.9	
6	43.3	3.1	7.1	112.6	4.8	4.3	300	3.3	1.1	
=, ,		45.5		109.0			305.1			
S(ng)	1.7			6.3			4.5			
RSD'(%)	3.7			5.8			1.5			
重复性限 r(ng)	10.2			21.0			24.9			
再现性现 R(ng)		10.4			26.1			26.1		

甲氧 DDT

实验室号	空白加	标 50ng 结果	₹ (ng)	空白加林	空白加标 100ng 结果 (ng)			空白加标 300ng 结果 (ng)		
大 独至 5	$-\frac{}{x_i}$	Si	RSDi%	$\frac{-}{x_i}$	Si	RSDi%	$-\frac{}{x_i}$	Si	RSDi%	
1	55.2	2.5	4.5	112	4.1	3.7	297	11.3	3.8	
2	53.3	3.7	6.9	113	11.5	10.2	291	9.9	3.4	
3	49.3	4.8	9.8	108	6.3	5.9	286	6.9	2.4	
4	55.4	4.7	8.5	123	5.9	4.8	285	15.0	5.3	
5	53.7	4.6	8.6	111	15.0	13.5	284	4.4	1.5	
6	52.1	7.1	13.6	110	6.3	5.8	275	7.6	2.8	
= x(ng)		53.2		112.8			286.2			
S'(ng)		2.3			5.3			7.5		
RSD'(%)	4.3			4.7			2.6			
重复性限 r(ng)	12.8			23.0			25.7			
再现性现 R(ng)		13.3			25.7			31.4		

灭蚁灵

实验室号	空白加	标 50ng 结果	! (ng)	空白加林	空白加标 100ng 结果 (ng)			空白加标 300ng 结果 (ng)		
关 型至 5	_ 	Si	RSDi%	_ 	Si	RSDi%	$-\frac{x_i}{x_i}$	Si	RSDi%	
1	43.3	2.7	6.1	88.0	6.2	7.1	286	19.1	6.7	
2	42.9	3.4	7.9	96.3	11.1	11.6	276	15.0	5.4	
3	42.8	2.5	5.7	98.6	14.3	14.5	305	26.2	8.6	
4	47.5	3.5	7.5	97.5	3.2	3.3	271	25.8	9.5	
5	49.0	3.6	7.4	106.1	11.3	10.7	268	16.9	6.3	
6	49.7	3.6	7.3	103.9	8.1	7.8	298	30.8	10.3	
=		45.9		98.4			283.8			
S'(ng)		3.2			6.4			14.8		
RSD'(%)	7.0			6.5			5.2			
重复性限 r(ng)	9.0			25.3			62.4			
再现性现 R(ng)	12.2			29.2			70.5			

附表 7 有机氯农药方法精密度结果表

	附表 7	有机氯农药方法制	情密度结果表		
化合物名称	平均值 (ng)	实验室内相对标 准偏差%	实验室间相对 标准偏差%	重复性限 r(ng)	再现性现 R(ng)
	40.0	3.9~16.3	10.6	9.9	14.9
α - $\overrightarrow{\wedge}\overrightarrow{\wedge}\overrightarrow{\wedge}$	78.0	2.5 ~ 14.1	12.4	19.0	32.3
u-/\/\/\	204.3	3.2 ~ 4.6		23.3	
			6.1		41.0
HDC	36.3	7.6 ~ 23.7	7.7	15.3	15.9
HBC	87.7	2.4 ~ 17.5	6.9	20.7	25.4
	234.2	2.6 ~ 6.2	3.7	26.4	34.3
	53.7	9.8 ~ 17.6	8.8	17.2	20.6
β-六六六	91.7	5.1 ~ 10.1	7.6	17.7	25.0
	266.3	3.3 ~ 8.2	3.3	47.7	49.9
	42.7	6.3 ~ 18.3	5.6	16.1	16.2
γ-六六六	79.1	5.4 ~ 9.2	6.2	16.3	20.3
	209.4	2.9 ~ 5.8	5.9	26.2	42.2
	32.4	4.3 ~ 17.9	5.7	10.2	10.7
δ-六六六	79.2	4.7 ~ 12.9	9.9	18.6	27.8
	231.6	1.2 ~ 6.5	10.1	26.5	70.1
	48.4	4.8 ~ 19.4	8.7	13.7	17.2
七氯	81.8	$3.7 \sim 6.7$	8.1	11.1	21.1
	211.4	3.4 ~ 9.7	6.0	33.3	46.9
	38.8	2.2 ~ 20.0	6.6	11.5	12.7
艾氏剂	79.7	4.1 ~ 13.2	11.1	16.2	28.9
	235.5	2.6 ~ 16.2	5.1	45.5	53.3
	42.4	6.6 ~ 19.0	11.3	16.0	19.8
环氧七氯	74.7	5.9 ~ 13.6	8.6	20.4	26.1
	235.8	5.2 ~ 7.1	2.5	38.9	39.3
	38.8	2.9 ~ 7.1	4.4	5.4	6.9
γ-氯丹	78.6	4.9 ~ 9.3	6.6	14.1	19.5
• • • • •	235.3	3.2 ~ 6.9	3.5	29.0	34.9
	40.5	3.7 ~ 17.0	5.2	12.5	12.9
硫丹 I	78.5	3.9 ~ 16.0	9.2	18.3	26.2
, , .	247.7	1.4 ~ 5.5	1.8	28.0	28.4
	39.0	3.0 ~ 19.3	5.9	10.7	11.7
α-氯丹	79.7	4.8 ~ 9.5	6.4	14.0	19.1
w *()1	238.8	2.6 ~ 6.5	3.3	28.0	33.8
	44.7	1.4 ~ 13.5	7.2	10.5	13.1
4,4'-DDE	87.4	3.8 ~ 11.2	3.1	17.4	17.6
4,4 -DDE					
	267.3	2.3 ~ 11.4	3.8	54.3	57.0
XIV rt. ÷ul	45.1	4.0 ~ 17.5	5.7	13.0	13.9
狄氏剂	89.7	5.6 ~ 13.2	8.3	24.1	30.3
	252.0	2.4 ~ 7.4	4.5	31.5	42.9
D.VI ~ 1-1	54.1	6.1 ~12.9	4.8	14.2	14.9
异狄氏剂	92.5	6.1 ~9.7	3.7	19.5	20.2
	249.5	3.2 ~6.7	2.4	31.9	33.4
	50.6	4.2 ~9.5	4.7	8.8	10.4
硫丹 II	101.5	4.5 ~10.4	4.5	20.4	22.6
	279.0	2.5 ~4.9	2.9	28.0	34.2

化合物名称	平均值	实验室内相对标	实验室间相对	重复性限	再现性现
化合物名称	(ng)	准偏差%	标准偏差%	r(ng)	R(ng)
	55.0	3.8 ~9.4	5.2	11.0	12.8
4,4'-DDD	104.8	4.5 ~7.8	2.9	18.2	18.7
	300.7	2.4 ~5.5	1.5	29.8	30.1
	57.5	5.1 ~15.5	7.4	15.6	18.6
2,4'-DDT	96.3	4.2 ~14.5	5.4	22.1	24.9
	263.9	2.4 ~8.8	2.8	40.3	42.4
	31.1	13.4 ~19.5	7.9	14.2	14.7
异狄氏醛	67.1	8.1 ~16.2	7.0	21.8	23.8
	213.3	11.9 ~19.3	8.2	90.6	96.0
	54.7	7.3 ~14.9	6.7	17.0	18.6
硫丹硫酸盐	112.1	4.9 ~~13.5	5.3	25.3	28.4
	298.5	3.3 ~7.8	2.1	39.3	39.8
	51.6	4.9 ~15.9	5.7	13.5	14.8
4,4'-DDT	98.5	3.2 ~9.5	3.4	18.1	19.0
	284.1	1.1 ~7.1	3.0	42.2	45.2
	45.5	5.4 ~11.3	3.7	10.2	10.4
异狄氏酮	109.0	4.0 ~12.4	5.8	21.0	26.1
	305.1	1.1 ~5.7	1.5	24.9	26.1
	53.2	4.5 ~13.6	4.3	12.8	13.3
甲氧 DDT	112.8	3.7 ~13.5	4.7	23.0	25.7
	286.2	1.5 ~5.3	2.6	25.7	31.4
	45.9	5.7 ~7.9	7.0	9.0	12.2
灭蚁灵	98.4	3.3 ~ 14.5	6.5	25.3	29.2
	283.8	5.4~10.3	5.2	62.4	70.5

结论: 六个实验室测定空白加标50ng、100ng、300ng的样品,各实验室每个水平按照样品分析全过程平行测定6次,计算方法精密度。

验证结果表明,空白加标 50ng、100ng、300ng 有机氯农药,实验室内相对标准偏差为 1.4~29.6%、 2.4~17.5%、1.1~19.3%,实验室间相对标准偏差为 3.7~11.3%、2.9~12.4%、1.5~10.1%; 重复限分别为 5.4~17.2ng、11.1~25.3ng、23.3~90.6ng,再现性限分别为 6.9~20.6ng、17.6~32.3ng、13.5~96.0ng。

4.方法准确度数据汇总

附表 8 方法准确度数据汇总表

		附表 8 万法准确是致据汇总。 样品 1			样品 2			
化合物名称	实验室编 号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	8.8	100	72.1	0.0	300	70.6	
	2	32.2	100	83.8	22.3	300	71.4	
	3	0.0	100	85.1	27.4	300	65.8	
->->->-	4	9.1	100	79.7	0.0	300	74.8	
α-六六六	5	42.2	100	71.9	34.2	300	77.0	
	6	2.9	100	92.0	31.9	300	71.5	
	<i>p</i> (<i>ng</i>)		80.8			71.9		
	$S_{\overline{P}}(ng)$		7.9			3.8		
	实验室编		样品1			样品 2		
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	67.0	100	63.8	86.6	300	63.7	
	2	137.9	100	83.0	75.8	300	73.3	
	3	43.9	100	73.0	24.2	300	68.7	
六氯苯	4	62.3	100	64.7	89.3	300	62.8	
八京本	5	58.1	100	81.5	73.3	300	87.6	
	6	57.1	100	71.8	24.2	300	69.9	
	$\overline{p} (ng)$	73.0			71.0			
	$S_{\overline{P}}(ng)$	8.1			9.0			
	实验室编		样品 1			样品 2		
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	29.7	100	71.1	22.8	300	79.7	
	2	12.2	100	76.4	20.0	300	84.3	
	3	26.6	100	68.0	153.0	300	77.7	
β-六六六	4	40.8	100	68.4	0.0	300	78.3	
p-/1/1/1	5	19.4	100	79.3	16.9	300	88.9	
	6	22.5	100	72.4	21.9	300	86.7	
			72.6			82.6		
	$S_{\overline{P}}(ng)$		4.5			4.7		

	实验室编		样品1		样品 2			
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi(%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	7.7	100	77.8	12.7	300	78.4	
	2	25.1	100	71.1	17.0	300	86.4	
	3	0.0	100	89.3	32.3	300	86.3	
<u> </u>	4	18.2	100	74.4	9.0	300	75.9	
γ-六六六	5	26.0	100	82.5	17.2	300	86.2	
	6	16.5	100	84.4	17.3	300	76.9	
	\overline{p} (ng)		79.9			81.7		
	$S_{\overline{P}}(ng)$		6.7			5.1		
	实验室编		样品1			样品 2		
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi(%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	3.6	100	86.4	2.3	300	71.9	
	2	48.0	100	78.2	53.5	300	79.5	
	3	10.8	100	85.6	0.0	300	67.3	
	4	16.3	100	83.5	20.1	300	69.1	
δ-六六六	5	34.1	100	72.9	65.8	300	72.0	
	6	2.0	100	86.9	0.0	300	63.9	
	\overline{p} (ng)		82.3		70.6			
	$S_{\overline{P}}(ng)$		5.6		5.3			
	实验室编	样品 1		样品 2				
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi(%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	26.9	100	67.8	0.0	300	81.8	
	2	40.8	100	85.4	0.0	300	91.7	
	3	11.1	100	81.3	0.0	300	98.4	
七氯	4	34.4	100	79.7	0.0	300	85.9	
一、水	5	25.1	100	90.2	0.0	300	94.6	
	6	18.4	100	96.5	0.0	300	81.8	
			83.5			89.0		
	$S_{\overline{P}}(ng)$		9.8			6.9		

	实验室编		样品1		样品 2			
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi(%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	0.0	100	97.0	0.0	300	82.3	
	2	0.0	100	91.3	0.0	300	96.3	
	3	0.0	100	87.4	38.4	300	91.7	
艾 氏剂	4	0.0	100	86.1	0.0	300	80.0	
文 风 河	5	0.0	100	94.5	0.0	300	89.0	
	6	0.0	100	78.9	0.0	300	84.4	
			89.2			87.3		
	$S_{\overline{P}}(ng)$		6.5			6.1		
	实验室编		样品1			样品 2		
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	0.0	100	82.1	0.0	300	73.2	
	2	0.0	100	101.4	0.0	300	77.9	
	3	0.0	100	70.2	0.0	300	93.4	
环氧七氯	4	0.0	100	87.2	0.0	300	82.1	
が主(で)	5	0.0	100	102.1	0.0	300	88.6	
	6	0.0	100	83.9	0.0	300	101.5	
	p (ng)		87.8			86.1		
	$S_{\overline{P}}(ng)$		12.2		10.4			
	实验室编	样品 1			样品 2			
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	0.0	100	84.1	0.0	300	77.5	
	2	0.0	100	89.6	0.0	300	83.9	
	3	7.1	100	87.7	0.0	300	94.8	
γ-氯丹	4	0.0	100	89.4	0.0	300	81.6	
/-冰/ J	5	0.0	100	100.8	0.0	300	92.9	
	6	0.0	100	81.4	0.0	300	77.9	
	\overline{p} (ng)		88.8			84.8		
	$S_{\overline{P}}(ng)$		6.7			7.4		

	实验室编		样品1		样品 2			
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi(%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	0.0	100	88.8	0.0	300	74.2	
	2	3.7	100	85.2	0.0	300	87.9	
	3	0.0	100	74.5	0.0	300	65.0	
硫丹 I	4	0.0	100	88.9	0.0	300	76.6	
19/L/J I	5	0.0	100	85.8	0.0	300	90.9	
	6	0.0	100	86.2	0.0	300	67.9	
	\overline{p} (ng)		84.9			77.1		
	$S_{\overline{P}}(ng)$		5.3			10.5		
	实验室编		样品1			样品 2		
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	2.9	100	95.0	0.0	300	79.7	
	2	0.0	100	92.2	0.0	300	84.6	
	3	0.0	100	90.9	0.0	300	98.7	
α-氯丹	4	0.0	100	85.4	31.0	300	84.9	
α- ₋ π(/)	5	0.0	100	89.6	0.0	300	82.0	
	6	0.0	100	82.1	0.0	300	75.7	
	\overline{p} (ng)		89.2		84.3			
	$S_{\overline{P}}(ng)$		4.7		7.8			
	实验室编		样品1			样品 2		
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi(%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi (%)	
	1	6.1	100	77.8	0.0	300	76.9	
	2	3.8	100	93.4	24.9	300	73.9	
	3	0.0	100	84.1	31.0	300	86.5	
4,4'-DDE	4	7.2	100	78.3	62.4	300	78.0	
4,4 -DDE	5	10.6	100	94.3	10.3	300	93.5	
	6	0.0	100	91.4	4.3	300	77.3	
			86.5			81.0		
	$S_{\overline{P}}(ng)$		7.5			7.4		

	实验室编		样品1		样品 2			
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	0.0	100	89.0	0.0	300	83.6	
	2	0.0	100	86.1	0.0	300	82.2	
	3	0.0	100	80.2	20.1	300	91.9	
处式刻	4	0.0	100	91.6	0.0	300	75.0	
狄 氏剂	5	0.0	100	94.4	0.0	300	87.3	
	6	0.0	100	82.3	0.0	300	77.4	
	\overline{p} (ng)		87.3			82.9		
	$S_{\overline{P}}(ng)$		5.4			6.2		
	实验室编		样品1			样品 2		
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	0.0	100	91.2	0.0	300	89.7	
	2	0.0	100	88.8	0.0	300	95.5	
	3	0.0	100	92.7	0.0	300	103.6	
무사로체	4	0.0	100	97.2	0.0	300	85.9	
异狄氏剂	5	0.0	100	102.6	0.0	300	102.9	
	6	0.0	100	97.1	0.0	300	85.2	
			94.9		93.8			
	$S_{\overline{P}}(ng)$		5.0		8.2			
	实验室编		样品1			样品 2		
化合物名称	号 号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	0.0	100	94.4	0.0	300	87.9	
	2	0.0	100	106.3	0.0	300	89.2	
	3	5.3	100	80.9	5.0	300	101.1	
法同用	4	0.0	100	89.1	0.0	300	85.0	
硫丹 II	5	0.0	100	98.5	0.0	300	91.2	
	6	0.0	100	85.6	5.0	300	82.6	
			92.5			89.5		
	$S_{\overline{P}}(ng)$		9.2			6.5		

	实验室编	样品 1			样品 2			
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	16.0	100	79.1	0.0	300	91.7	
	2	24.0	100	85.7	7.8	300	88.6	
	3	9.3	100	86.3	50.7	300	96.8	
4.41.000	4	15.9	100	85.7	6.2	300	89.8	
4,4'-DDD	5	28.7	100	77.2	7.8	300	95.7	
	6	0.0	100	90.4	46.8	300	78.8	
	\overline{p} (ng)		84.1			90.3		
	$S_{\overline{P}}(ng)$		5.0			6.5		
	实验室编		样品1			样品 2		
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	1.9	100	90.5	0.0	300	85.4	
	2	0.0	100	97.4	33.4	300	83.0	
	3	14.6	100	87.1	66.5	300	88.3	
2 41 DDT	4	3.0	100	91.4	0.0	300	83.7	
2,4'-DDT	5	14.8	100	97.5	11.5	300	93.6	
	6	7.8	100	84.3	67.5	300	93.4	
	\overline{p} (ng)		91.4		87.9			
	$S_{\overline{P}}(ng)$		5.4		4.7			
	实验室编	样品 1			样品 2			
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	0.0	100	75.2	0.0	300	79.9	
	2	0.0	100	70.9	0.0	300	78.8	
	3	0.0	100	83.7	0.0	300	95.3	
巨沙丘贼	4	0.0	100	60.1	0.0	300	60.1	
异狄氏醛	5	0.0	100	64.5	0.0	300	55.1	
	6	0.0	100	66.4	0.0	300	66.6	
	\overline{p} (ng)		70.1		72.6			
	$S_{\overline{P}}(ng)$		8.5			14.9		

11. A d. to Th	实验室编		样品1		样品 2			
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	0.0	100	82.6	0.0	300	99.2	
	2	0.0	100	90.0	0.0	300	103.1	
	3	0.0	100	89.1	0.0	300	101.2	
硫丹硫酸盐	4	0.0	100	88.1	0.0	300	89.7	
孙[[]] 孙[[]] []	5	0.0	100	103.0	0.0	300	96.6	
	6	0.0	100	83.3	0.0	300	79.7	
	p (ng)		89.3			94.9		
	$S_{\overline{P}}(ng)$		7.4			8.8		
11. A db b tb	实验室编		样品1			样品 2		
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi(%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	19.7	100	70.2	0.0	300	87.3	
	2	17.8	100	88.8	3.5	300	83.0	
	3	3.9	100	76.8	46.8	300	80.6	
4,4'-DDT	4	8.6	100	90.4	0.0	300	87.2	
ועט- ד,ד	5	11.7	100	87.1	8.7	300	87.4	
	6	0.0	100	82.1	5.5	300	79.8	
	\overline{p} (ng)	82.6			84.2			
	$S_{\overline{P}}(ng)$	7.8			3.5			
	实验室编		样品1			样品 2		
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi (%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	0.0	100	104.7	0.0	300	92.8	
	2	0.0	100	80.8	12.3	300	86.2	
	3	0.0	100	97.9	18.4	300	95.6	
단지 그 패크	4	0.0	100	106.3	0.0	300	90.8	
异狄氏酮	5	0.0	100	96.1	0.0	300	93.7	
	6	0.0	100	97.9	0.0	300	82.7	
	\overline{p} (ng)		97.3			90.3		
	$S_{\overline{p}}(ng)$		9.1			4.9		

11 A 11 Fort	实验室编	样品 1			样品 2			
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi(%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	0.0	100	95.0	0.0	300	87.4	
	2	0.0	100	78.2	0.0	300	96.3	
	3	0.0	100	101.6	0.0	300	105.5	
甲氧 DDT	4	0.0	100	105.2	0.0	300	91.2	
中彰 DD1	5	0.0	100	96.8	0.0	300	96.1	
	6	0.0	100	104.4	0.0	300	88.7	
	<i>p</i> (<i>ng</i>)		96.9		94.2			
	$S_{\overline{P}}(ng)$	10.0			6.7			
11. A 16. 6.76.	实验室编	样品1			样品 2			
化合物名称	号	样品含量 (ng)	加标量 (ng)	平均回收 率 Pi(%)	样品含量 (ng)	加标量(ng)	平均回收率 Pi(%)	
	1	0.0	100	95.4	13.1	300	81.4	
	2	0.0	100	83.7	0.0	300	102.8	
	3	0.0	100	99.3	0.0	300	102.5	
TAN E	4	0.0	100	95.0	0.0	300	86.8	
灭蚁灵	5	0.0	100	89.4	0.0	300	101.6	
	6	0.0	100	95.3	0.0	300	78.8	
	\overline{p} (ng)		93.0		92.3			
	$S_{\overline{P}}(ng)$		5.6			11.2		

附表 9 方法准确度结果表

	加标	量 100ng	加标量 300ng		
化合物名称	加标回收率范围 (%)	加标回收率最终值(%)	加标回收率范围 (%)	加标回收率最终值(%)	
α-六六六	71.9 ~ 92.0	80.9±15.7	65.8 ~ 77.0	71.9±7.7	
六氯苯	63.8 ~ 83.0	73.0±16.2	62.8 ~ 87.6	71.0±18.1	
β-六六六	68.0 ~ 89.3	74.3±15.9	77.7 ~ 88.9	82.6±9.4	
γ-六六六	71.1 ~ 89.3	79.9±13.5	75.9 ~ 86.4	81.7±10.2	
δ-六六六	72.9 ~ 86.9	82.3±11.2	63.9 ~ 79.5	70.6±10.6	
七氯	67. 8 ~ 96.5	83.5±19.7	81.8 ~ 98.4	89.0±13.8	
艾氏剂	78.9 ~ 97.0	89.2±13.0	80.0 ~ 96.3	87.3±12.3	
环氧七氯	70.2 ~ 102	87.8±24.4	73.2 ~ 101	86.0±20.9	
γ-氯丹	81.4 ~ 101	88.8±13.4	77.5 ~ 94.8	84.8±14.9	
硫丹 I	74.5 ~ 88.9	84.9±10.6	65.0 ~ 90.9	77.1±20.9	
α-氯丹	82.1 ~ 95.0	89.2±9.4	75.7 ~ 98.7	84.3±15.7	
4,4'-DDE	77.8 ~ 94.3	86.5±15.0	73.9 ~ 93.5	81.0±14.9	
狄氏剂	80.2 ~ 94.4	87.3±10.9	75.0 ~ 91.9	82.9±12.5	
异狄氏剂	88.8 ~ 103	94.9±10.0	85.2 ~ 103	93.8±16.4	
硫丹 II	80.9 ~ 106	92.5±18.4	82.6 ~ 101	89.5±12.9	
4,4'-DDD	77.2 ~ 90.4	84.1±9.9	78.8 ~ 96.8	90.3±12.9	
2,4'-DDT	84.3 ~ 97.5	91.4±10.7	83.0 ~ 93.6	87.9±9.4	
异狄氏醛	60.1 ~ 83.7	70.1±16.9	55.1 ~ 95.3	72.6±29.7	
硫丹硫酸盐	83.3 ~ 103	90.7±14.7	79.7 ~ 103	94.9±17.6	
4,4'-DDT	70.2 ~ 90.4	82.6±15.6	79.8 ~ 87.4	84.2±7.1	
异狄氏酮	80.8 ~ 106	97.3±18.1	82.7 ~ 95.6	90.3±9.8	
甲氧 DDT	78.2 ~ 105	96.9±20.0	87.4 ~ 106	94.2±13.3	
灭蚁灵	83.7 ~ 99.3	93.0±11.1	78.8 ~103	92.3±22.5	

结论:四台大气有机采样器放置在同一地点,同时启动采集 18 小时样品,连续采集 2 天供一个实验室使用,其中一个样品做为本底,另三个样品在提取前加入有机氯农药,每个实验室进行 100ng、300ng 二水平加标。实际样品加标 100ng、300ng 加标回收率均值分别为 60.1%~106%、55.1%~106%。。

5.方法验证结论

方法《环境空气 气相和颗粒物中有机氯农药的测定 气相色谱质谱法》——有机氯农药部分,方法

的检出限、精密度和准确度是评价方法水平的主要技术指标,经方法验证,结果如下:

- (1) 共6家单位参加了方法验证工作,所得数据基本能满足方法要求。
- (2)方法检出限和测定下限:气相色谱质谱法测定环境空气中的有机氯农药的检出量为6.7~ 18.3ng/1ml。当以225L/min采集环境空气24h时,检出限为0.03~0.06ng/m³,测定下限为0.12~0.24ng/m³。 详见附表5。
- (3) 方法精密度: 精密度通常采用标准偏差或相对标准偏差来表示,方法验证所得实验室内相对标准偏差除个别组分低浓度达到29.6%,大多数低于20%;实验室间相对标准偏差均在15%以下。六家实验室分别测定加标量为50ng、100ng和300ng的有机氯农药样品(n=6),实验室内相对标准偏差为1.4~29.6%、2.4~17.5%、1.1~19.3%,实验室间相对标准偏差为3.7~11.3%、2.9~12.4%、1.5~10.1%;重复限分别为5.4~17.2ng、11.1~25.3ng、23.3~90.6ng,再现性限分别为6.9~20.6ng、17.6~32.3ng、13.5~96.0ng。详见附表7。
- (4) 方法准确度:主要用加标回收率表示,经过六家实验室验证,实际样品加标回收率基本在 60%以上,实际样品加标 100 和 300ng 的有机氯农药,加标回收率分别为 60.1%~106%、55.1%~106%。详见附表 9。