中华人民共和国强制性国家标准《饲料添加剂 第5部分:微生物 凝结芽孢杆菌》 (公开征求意见稿)

编制说明

武汉新华扬生物股份有限公司 中国农业科学院饲料研究所 湖北华扬科技发展有限公司

2024年8月

目录

— 、	工作	简况	(包括任务来源、	制定背景、	工作过程等	等)	1
	(-)	任务	来源	•••••			1
	(二)	制定	背景	•••••			1
	(三)	工化	f 过程	•••••			2
	1.	起草	阶段	•••••			3
	2.	定向	征求意见	•••••			3
	3.	第三	方验证				3
	4.	预审					3
	5.	公开	征求意见	•••••			4
二、	编制	原则、	、强制性国家标》	隹主要技术要	E 求的依据	(包括验证报告、	、统计数
据等)及班	里由		•••••			4
	(-)	标准	编制原则	•••••			4
	(二)	主要	技术要求确定的	依据			4
	1	国内组	外生产情况				4
	2	标准落	范围				12
	3	术语	和定义				12
	4	凝结	芽孢杆菌的鉴别证	式验			12
	5	活菌	数测定方法				36
	6	芽孢	数测定方法				42
	7	活菌	数和芽孢数的确定	Ĕ			42
	8	杂菌	率				43
	9	外观-	与性状				46
	10	水分	·				48
	11	粒度	<u>.</u>				48
	12	总码	的测定	•••••			48
	13	铅的]测定	•••••			49
	14	- 汞的]测定				50

	15	镉的测定52	1
	16	霉菌总数52	2
	17	大肠菌群的测定52	2
	18	沙门氏菌的测定53	3
	19	黄曲霉毒素 B ₁ 测定53	3
	20	玉米赤霉烯酮的测定54	4
	21	脱氧雪镰刀菌烯醇的测定55	5
	22	保质期56	5
	23	与已发布同类标准指标比较56	5
	(三)	第三方验证57	7
三、	与有	关法律、行政法规和其他强制行标准的关系,配套推荐性标准的制定	2
情况		57	7
四、	与国	际国标准化组织、其他国家或者地区有关法律法规和标准的比对分析	58
五、	重大	分歧意见的处理过程、处理意见及依据58	3
六、	对强	制性国家标准自发布日期至实施日期的过渡期(以下简称为过渡期)	
的建	议及玛	里由58	3
七、	与实	施强制性国家标准有关的政策措施58	3
八、	是否	需要对外通报的建议及理由59	Э
九、	废止:	现行有关标准的建议59	Э
+,	涉及	专利的有关说明59	Э
+-	、强	制性国家标准所涉及的产品、过程或者服务目录59	Э
+=	、 其·	他应予说明的事项59	9

一、工作简况(包括任务来源、制定背景、工作过程等)

(一) 任务来源

本标准制定任务来源于全国饲料工业标准化技术委员会,项目任务编号为 20221496-Q-326。

起草单位:武汉新华扬生物股份有限公司、中国农业科学院饲料研究所、湖北华扬科技发展有限公司。

主要起草人:徐丽、乔宇、石波、周樱、詹志春。

(二)制定背景

目前,自我国成为世界第一大饲料生产国后,更加注重饲料的高质量发展,饲料质量安全成为饲料工业高质量发展的核心要素。饲料行业进入无抗时代,饲料中不允许添加药物性饲料添加剂。以益生菌为代表的肠道健康产品在应对饲料全面"禁抗"中起到了关键作用。农业农村部 2004 年第 372 号公告批准饲用凝结芽孢杆菌作为饲料添加剂使用,并在 2008 年公布的《饲料添加剂品种目录》中列入保护期内的新饲料和新饲料添加剂。

凝结芽孢杆菌的首次发现可以追溯到 1915 年,Hammer 发现凝结芽孢杆菌引起大规模的罐装炼乳凝结,1932 年凝结芽孢杆菌被首次分离。在发现之初凝结芽孢杆菌被称为芽孢乳酸杆菌(Lactobacillus sporogenes),具有杆菌科和乳酸菌科的共同特征,后来才更名为凝结芽孢杆菌(B.coagulans)。Gupta 等(2020)为了明确芽孢杆菌的进化关系和物种分类,对 300 株芽孢杆菌们进行了全面的系统基因组学比较分析。结果发现,除了枯草芽孢杆菌和蜡样芽孢杆菌所在分支外,其余大多数芽孢杆菌物种形成了 17 个新的不同分支。基于系统发育和分子证据,研究者建议从芽孢杆菌物种分出 17 个新属,命名为 Alteribacter, Ectobacillus, Evansella, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Niallia, Priestia, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sutcliffiella , Weizmannia。其中凝结芽孢杆菌(Bacillus coagulans),所在分支独立为魏茨曼氏菌属(Weizmannia,纪念微生物学家和生物化学学家、以色列首任总统 Chaim Weizmann),相应改名为凝结魏茨曼氏菌(Weizmannia coagulans)。2023 年 NARSING 等基于全基因组序列分析在属水平将凝结魏茨曼氏菌又更名

为海恩德里克斯氏菌属(Heyndrickxia coagulans)。

作为批准允许使用的微生物类饲料添加剂,凝结芽孢杆菌具有独特的性质。凝结芽孢杆菌是兼性厌氧菌,在不良条件下形成芽孢,具有强抗逆性和耐热性,抵抗胃肠道内的极端环境,具有益生菌特征。凝结芽孢杆菌最适生长温度为35℃~50℃,最适生长pH为5.5~6.5。少数耐高温凝结芽孢杆菌在pH6.2,60℃~65℃也能生长。在pH4.5,65℃的环境中也曾分离到凝结芽孢杆菌。凝结芽孢杆菌在 pH6.2,60℃~65℃也能生长。在pH4.5,65℃的环境中也曾分离到凝结芽孢杆菌。凝结芽孢杆菌在 100℃处理 10分钟,存活率可达 96%,能耐受饲料加工过程中的高温、高压环境。能够进行乳酸发酵,产生的 L-乳酸能降低肠道 pH值。在动物日粮中添加凝结芽孢杆菌能够:1)抑制病原菌的增殖,促进双歧杆菌、乳酸菌等增殖并合成多种 B 族维生素,增强机体对营养物质的吸收,提高养殖动物的生长性能。2)促进乳酸菌等有益菌的增殖,对致病菌有拮抗作用,优化动物肠道。3)凝结芽孢杆菌能诱导动物体内炎症介质和抗炎细胞因子产生,激发免疫系统保护宿主减少炎症反应。4)凝结芽孢杆菌提高调节肝脏中抗氧化酶和抗氧化酶的转录调节水平来缓解机体氧化应激。

凝结芽孢杆菌作为微生物类饲料添加剂已被列入饲料添加剂品种目录中,但尚未有饲料添加剂凝结芽孢杆菌的国家标准或行业标准,只有云南省标准化协会发布团体标准《饲料添加剂 凝结芽孢杆菌的测定》 T/YNBX 024-2021,北京生物饲料产业技术创新战略联盟发布团体标准《饲料添加剂 凝结芽孢杆菌》 T/CSWSL 022-2020 和辽宁省市场监督管理局发布辽宁省地方标准《饲用微生物制剂中凝结芽孢杆菌的检测》DB21/T 3278-2020。国外也没有关于饲料添加剂凝结芽孢杆菌的具体标准可以查询。欧盟于 2020 年 11 月 25 日批准凝结芽孢杆菌DSM 32016 作为饲料添加剂用于哺乳和断奶仔猪、家禽育肥和观赏鸟类,规定在含水率 12%全价饲料中的最低含量为 1×10° CFU/kg,并规定了菌落计数(EN 15787 方法)以及菌种鉴别的方法(脉冲场凝胶电泳)。

由于缺乏统一的标准进行规范约束和验证,导致市场上产品质量难以监控,阻碍了该产品在饲料行业的应用。为了规范该类产品在饲料工业及畜牧生产中的使用,更好地发挥该类产品抗病促生长的优势,保护生产者和消费者的合法利益,迫切需要制定该标准。

(三) 工作过程

1. 起草阶段

2023年1月~9月,确定起草组并进行分工,完成初稿。

武汉新华扬生物股份有限公司(徐丽、周樱): 收集查询国内企业标准并进行比较整理,汇总为参考依据。建立凝结芽孢杆菌活菌及芽孢数的检测方法,收集市场流通微生态制剂产品,论证杂菌率方法,进行活菌数、芽孢数、质量指标、卫生指标等的检测。

中国农业科学院饲料研究所(乔宇、石波):查询国内登记注册厂家信息,查询国际国外标准情况及相关文献。收集咨询国内生产厂家相关信息,并收集样品。建立凝结芽孢杆菌的鉴别方法,并对收集的样品进行测试。征询生产企业及用户关于标准制定的意见和建议。

湖北华扬科技发展有限公司(詹志春):提供产品生产及市场背景信息,以及生产过程数据信息,提供标准制修订资源,协调项目运行。

经过三方对初步数据的汇总讨论,初步确定标准中各参数及数值,并按照 GB/T 1.1-2020 形成了标准文本及编制说明初稿。

2. 定向征求意见

2023年10月~12月进行定向征求意见,发函单位34个,回函单位27个,未回函单位7个;提出意见单位24个,无意见单位3个。发函单位性质包括生产企业,科研院所,第三方检测机构及使用企业。共提出意见134条;采纳98条,部分采纳2条,不采纳34条。提出的意见主要包括书写规范、格式要求、杂菌率及杂菌检测方法、液态剂型、颗粒剂型及粒度、鉴定方法、毒素指标及毒素检测方法等方面的问题。

3. 第三方验证

2024年1月~4月完成三家方法验证,由中国农业科学院饲料研究所委托国家饲料质量检验检测中心,武汉新华扬生物股份有限公司委托湖北省饲料质量监督检验站和辽宁省农产品及兽药饲料产品检验检测院共同完成,三家检测结果显示预审稿中检测方法及鉴定方法适用于饲料添加剂凝结芽孢杆菌。

4. 预审

2024年6月起草组向全国饲料工业标准化技术委员会提交预审申请。2024

年7月30日,全国饲料工业标准化技术委员会微生物及酶制剂标准化工作组组织专家对武汉新华扬生物股份有限公司等单位起草的强制性国家标准《饲料添加剂第5部分:微生物凝结芽孢杆菌》(预审稿)进行了认真审查。专家组由饶正华、杨曙明、曹云鹤、韩小敏、张晓琳、羊宋贞、阮静、乔琳组成。列席企业代表有北京挑战生物技术有限公司王海燕、北京昕大洋科技发展有限公司余艳、昆明三正生物科技(集团)有限公司李亚平。在听取起草专家汇报的基础上,专家组审查了标准文本及编制说明,提出了修改意见。与会专家一致同意标准起草单位按照意见修改形成公开征求意见稿,报全国饲料工业标准化技术委员会秘书处。

5. 公开征求意见

2024年8月,起草组提交公开征求意见稿。

二、 编制原则、强制性国家标准主要技术要求的依据(包括 验证报告、统计数据等)及理由

(一) 标准编制原则

本文件根据 GB/T 1.1-2020《标准化工作导则第 1 部分:标准化文件的结构和起草规则》、GB/T 20001.10-2014《标准编写规则第 10 部分:产品标准》及GB/T 20001.4-2015《标准编写规则第 4 部分:试验方法标准》的规定进行编制。

参考国内外标准,如 NY/T 1444-2007《微生物饲料添加剂技术通则》、GB/T 23181-2008《微生物饲料添加剂通用要求》、GB 13078-2017《饲料卫生标准》、《直接饲喂微生物和发酵制品生产菌株鉴定及其安全性评价指南》、团体标准、同类产品标准、企业标准中各项技术指标,结合实测数据进行制定。

(二) 主要技术要求确定的依据

1 国内外生产情况

1.1 国内外标准情况

目前国内在国家标准和行业标准中,尚无凝结芽孢杆菌的检测方法标准和产

品标准。云南省标准化协会发布团体标准 T/YNBX 024-2021《饲料添加剂 凝结 芽孢杆菌的测定》,北京生物饲料产业技术创新战略联盟发布团体标准 T/CSWSL 022-2020《饲料添加剂 凝结芽孢杆菌》,辽宁省市场监督管理局发布辽宁省地 方标准 DB21/T 3278-2020《饲用微生物制剂中凝结芽孢杆菌的检测》。

国际标准化组织 2013 年颁布了芽孢杆菌落计数的方法: 食物链微生物学微生物计数的水平法第 1 部分: 用倒板技术在 30℃下的菌落计数(ISO 4833-1-2013)。 欧盟于 2020 年 11 月 25 日批准凝结芽孢杆菌 DSM 32016 作为饲料添加剂用于哺乳和断奶仔猪、家禽育肥和观赏鸟类, 规定在含水率 12%全价饲料中的最低含量为 1×10° CFU/kg, 并规定了菌落计数 (EN 15787 方法)以及菌种鉴别的方法 (脉冲场凝胶电泳)。

1.2 国内外生产情况

目前国际品牌饲料添加剂凝结芽孢杆菌在国内基本未见销售,国内已有多家企业致力于饲用凝结芽孢杆菌的研发、生产及应用,经查询注册生产的企业有83家,生产型企业收集的样品及保藏中心菌种见下表1。

国内生产厂家大多采用液体深层发酵工艺生产凝结芽孢杆菌,产品为固体剂型为主。生产工艺大致流程: 斜面培养 → 摇瓶培养 → 种子罐 → 发酵罐 → 浓缩 → 载体吸附 → 干燥 → 成品包装。凝结芽孢杆菌菌种经过斜面培养、摇瓶培养至种子罐培养,在种子罐培养至适宜阶段转移到发酵罐中,发酵过程监测并控制发酵液的溶氧、温度、pH等指标,待发酵罐中菌体生长至芽孢生成率达到一定比例停止发酵。发酵液经一定处理后添加载体后进行干燥,按要求计量、包装。

对比凝结芽孢杆菌团标和企标(见表 2),85%饲料添加剂凝结芽孢杆菌中卫生指标是按照 NY/T 1444-2007 中规定执行的,有 50%以上的企标删除了杂菌率。而混合型饲添添加剂凝结芽孢杆菌企标中技术指标差异就比较大,主要差异在卫生指标如总砷、铅、汞、镉、霉菌总数、大肠菌群的规定上。绝大部分企业采用的液体发酵生产凝结芽孢杆菌,极个别企业使用固态发酵生产。

剂型: 剂型主要为固体型产品,也有企标涉及液体产品。但是市场流通产品 只有固态产品,因液体产品储存稳定性不及固态产品,市场需求有限,未收集到 在售的饲料添加剂级别的液态产品。饲料添加剂液态凝结芽孢杆菌企标包括河南 炎黄生物工程有限公司和湖北雅琪生物科技有限公司两家公司,混合型饲料添加剂液态凝结芽孢杆菌包括河南省派特生物科技有限公司,山西宇弘晟生物科技有限公司,河南百草元兽药有限公司,艾倪生物技术(镇江)有限公司,青岛尚德生物技术有限公司,河南伟佳大成牧尔康生物技术有限公司等单位。经过电话咨询以上企业涉及液体产品企标的企业,均表示无产品在市场中流通。

载体: 企标中标识的载体无机类的有石粉、麦饭石、滑石粉、蒙脱石粉、轻质碳酸钙、沸石粉、凹凸棒石粉、高岭土等,有机类的有葡萄糖、稻壳粉、玉米淀粉、饲用天然植物、玉米皮、麦芽糊精、玉米、白酒糟、麸皮、玉米胚芽粕、棉粕、豆粕、糊精、蛋白胨、氯化钠、淀粉等。

表 1: 凝结芽孢杆菌样品信息

		秋1・灰月月18日 西日	
序号	标识	描述	来源
1	CMGCC1.0007	30℃培养,含30%甘油菌液	中国微生物菌种保藏中心
2	CMGCC1.2009	30℃培养,含30%甘油菌液	中国微生物菌种保藏中心
3	CMGCC1.2407	37℃培养,含30%甘油菌液	中国微生物菌种保藏中心
4	凝结芽孢杆菌	粉末, 1.0×10 ¹⁰ CFU/g	江苏奕农生物股份有限公司
5	凝结芽孢杆菌	粉末,1.0×10 ¹¹ CFU/g	北京科为博生物科技有限公司
6	凝结芽孢杆菌	粉末, 1.0×10 ¹⁰ CFU/g	山东益昊生物科技有限公司
7	凝结芽孢杆菌	粉末	青岛尚德生物技术有限公司
8	凝结芽孢杆菌	粉末	青岛根源生物技术集团有限公司
9	凝结芽孢杆菌	粉末, 1.0×10°CFU/g	山东宝来利来生物工程有限公司
10	凝结芽孢杆菌	粉末, 1.0×10 ¹⁰ CFU/g	山东宝来利来生物工程有限公司
11	凝结芽孢杆菌	粉末, ≥5.0×10°CFU/g	山东济宁市金益菌生物科技有限公司
12	凝结芽孢杆菌	粉末, ≥1.0×10 ¹⁰ CFU/g	山东济宁市金益菌生物科技有限公司
13	凝结芽孢杆菌	粉末, 1.0×10 ¹⁰ CFU/g	山东蔚蓝生物科技有限公司
14	凝结芽孢杆菌	粉末,10×10 ⁸ CFU/g	青岛贝宝海洋科技有限公司
15	凝结芽孢杆菌	粉末, 1.0×10 ¹⁰ CFU/g	山东天润和生物工程有限公司
16	凝结芽孢杆菌	粉末, 2.0×10 ¹⁰ CFU/g	山东天润和生物工程有限公司
17	凝结芽孢杆菌	粉末, 1.0×10 ¹⁰ CFU/g	山东得和明兴生物科技有限公司
18	凝结芽孢杆菌	粉末, ≥5.0×10 ¹⁰ CFU/g	武汉新华扬生物股份有限公司
	<u> </u>		

19	凝结芽孢杆菌	粉末, ≥5.0×10 ¹⁰ CFU/g	湖北华扬科技发展有限公司
20	凝结芽孢杆菌	粉末, 1.0×10 ¹⁰ CFU/g	江苏微康生物科技有限公司
21	凝结芽孢杆菌	粉末, 1.0×10 ¹⁰ CFU/g	湖北华扬科技发展有限公司
22	凝结芽孢杆菌	粉末,1.0×10 ¹⁰ CFU/g	湖南普菲克生物科技有限公司
23	凝结芽孢杆菌	粉末,1.0×10 ¹⁰ CFU/g	安徽省正一生物科技有限公司
24	凝结芽孢杆菌	粉末, 1.0×10 ¹⁰ CFU/g	武汉新华扬生物股份有限公司
25	CCTCC AB 92066	模式菌株	中国典型培养物保藏中心

表 2: 企标汇总分析

序号	标准号	种类	黄曲霉 B1 (μg/kg)	玉 米 赤 霉烯酮/ (mg/kg)	脱氧雪腐镰刀菌烯醇/(mg/kg)	砷 (总砷 计) (mg/kg)	铅 (mg/ kg)	汞 (mg/kg)	镉 (mg/kg)	霉菌总数 (cfu/g)	大肠菌群 (MPN/100 g)	沙门氏菌 [25g (ml)]	杂菌率 (%)	水分 (%)	pH 值 (液 体)	保质期(月)	是否阴凉贮存	菌 数 (CFU/g)	外观	载体
1	TCSWCL 022-2020	饲添	≤10	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤1	≤10	3.0-7.	固态 6 月,液 态 3 月	是	≥5.0×10 ⁹ ≥5.0×10 ⁸		
2	Q/370215 JKH 007-2022	混添	1	/	1	≤10	≤30	/	/	/	/	/	/	≤12	/	24	否	10 ⁸ -10 ⁹	浅 黄色 至棕色	葡萄糖、稻壳粉、石粉
3	Q/PT 044-2021	混添	/	/	/	≤10	≤30	/	/	/	/	不得检出	/	/	2.0-9.	12	否	106-108	色泽均	纯化水
4	Q/SYHS 017-2020	混添	≤10.0	/	1	≤10.0	≤30.0	/	/	/	/	不得检出	≤1.0	/	4.0-7. 0	18	否	10 ⁶ -10 ⁷	色泽均	纯化水
5	Q/370784SYJ	混添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤1.0	≤12	/	18	否	104-1011		
6	Q/HNFL 006-2022	混添	≤10.0	/	/	≤10	≤40	/	/	/	/	/	/	≤10	/	12	否	106-109	色泽均	葡萄糖,玉米 淀粉
7	Q/370902SBL	混添	≤10.0	/	/	≤10	≤20	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤0.5	≤10	/	12	否	108-1010	灰褐色	麦饭石
8	Q/12HNY 002-2022	混添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤1.0	≤12	/	24	否	107-1012		石粉、饲用天 然植物
9	Q/370214SDS 024-2021	混添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤100	不得检出	1	≤10	/	12	否	109-1010	淡黄色	滑石粉,玉米 皮,葡萄糖, 麦芽糊精

10	Q/370283QRQ 038-2022	混添	≤10.0	1	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤0.5	≤10	/	12	是	10 ⁷ -10 ¹⁰	灰白色	滑石粉
11	Q/(GD)HNC 79-2022	混添	/	/	/	≤2.0	≤5.0	/	/	/	/	/	/	≤10	/	12	否	109-1010		
12	Q/HBCY 025-2022	混添	≤10.0	/	/	≤20	≤40	/	/	/	/	/	/	/	<7.0	24	否	107-108		纯化水
13	Q/370702WDY 009-2018	混添	≤10.0	/	1	⊴.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤0.5	≤12	/	18	是	107-1011	灰白、淡黄	玉米、玉米皮 粉、白酒糟、 麸皮、玉米胚 芽粕、棉粕、 蒙脱石粉、豆 粕、石粉、高 岭土、麦饭 石、石粉、玉 米淀粉、糊 精、葡萄糖
14	Q/320681 WCA02-2022	混添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤0.5	≤10	/	12	否	>1010		玉米淀粉、葡 萄糖、凹凸棒 石粉
15	Q/ANS 036-2022	混添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤1.0	/	4.0-8. 0	12	是	10 ⁷ -10 ¹⁰		纯化水
16	Q/370214SDS 104-2022	混添	≤10.0	/	/	≤2.0	≤10.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	/	/	4.0-6. 0	12	否	108		生活饮用水
17	Q/XH 023-2019	混添	/	/	/	≤10	≤30	/	/	/	/	/	1	1	2.0-7.	18	否	105-109		

	Q/HSRZH														3.0-7.					
18	044-2022	混添	/	/	/	≤10	≤30	/	/	/	/	不得检出	/	/	5	18	否	10 ⁴ -10 ⁶		纯化水
10	Q/HYKJ	NE VE	,	,	,			,	,	,	,	,		40	,	,		406 4010	黄色-	石粉、沸石
19	006-2022	混添	/	/	/	≤5	≤10	/	/	/	/	/	≤1.0	≤10	/	/	是	10 ⁶ -10 ¹⁰	黄褐色	粉、麦芽糊精
	0/271225EVAI																			轻质碳酸钙、
20	Q/371325FKN	饲添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤1.0	≤12		12	否	109-1011		玉米淀粉、糊
	107-2020																			精
21	Q/370211QDH	饲添	≤10.0	,	,	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤1.0	≤7		24	否	≥10 ⁹		葡萄糖、蛋白
21	008-2021	N-314W	210.0	,	,	32.0	35.0		30.5	<2.0×10	31.0^10	11.14.17.TT	21.0	۵/		24	н	210		胨、氯化钠
22	Q/XMCK	饲添	≤10.0	,	,	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤1.0	,	5.0-7.	12	否	10 ⁷ -10 ⁹		
	035-2021	h-214m	_10.0	,	,		_5.0	_0.1	_0.5	2.0*10	21.0~10	- 1 - 14 - 155 TEL	21.0	,	0		н	10 10		
	Q/BAK	饲添-																		
23	08-2021	固态	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤1.0	≤10		12	否	≥109	褐色	
		发酵																		
24	Q/OCPE103-20	饲添	,	/	/	≤2.0	≤5.0	/	/		≤1.0×10 ⁴	不得检出	/	≤12		12	否	10 ⁹ -10 ¹⁰		
	21																			
25	Q/HYH	饲添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	/	≤13	3.0-7.	液体18	是	104-108		
	T005-2021														5	固态24				
	Q/320584																			
26	WKSW	饲添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤1.0	≤12			是	≥108		
	02-2021																			
27	Q/YBS013-202	饲添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	/	≤10		12	否	10 ⁹ -10 ¹⁰		
	1																			and to be
	Q/370402																			稻壳粉、石
28	JNS021-2022	饲添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	/	≤10		12	否	≥10¹0		粉、轻质碳酸
																				钙、麦芽糊

																				精、葡萄糖
29	Q/371621SLH 038-2017	饲添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤1.0	≤12		12	是	109-1011		淀粉
30	Q/HBYQ 29-2022	饲添	/	/	1	≤2.0	≤5.0	/	/	/	/	不得检出	1	/	/	固态-6 液体-3	否			
31	Q/KAK 11-2022	饲添	≤10.0	/	1	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤2.0	≤10		12	否	109-1010		
32	Q/370902SBL 103-2022	饲添	≤10.0	/	1	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出		≤10		12	否	109-1011	褐色	
33	Q/HLHM 009-2021	饲添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出		≤10		12	是	≥10 ¹⁰		
34	Q/JXHSW 014-2022	饲添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤1.0	≤9		12	是	$\geq 10^9$ $\geq 10^{10}$		
35	Q/HHDR 016-2022	饲添	≤10.0	/	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.1×10 ⁴	不得检出	≤1.0	≤10		12	否	≥10¹¹		
36	Q/HYKJ 04-2021	饲添	/	/	/	≤5	≤10	/	/	/	/	/	≤1.0	≤10		12	是	≥10 ⁹ ≥10 ¹⁰		
37	Q/653222XKL	饲添	≤10.0	1	/	≤2.0	≤5.0	≤0.1	≤0.5	<2.0×10 ⁴	≤1.0×10 ⁴	不得检出	≤0.5	≤10	/	12	否	109-1011	微黄色	

2 标准范围

本文件规定了饲料添加剂凝结芽孢杆菌的技术要求、取样、检验规则及标签、包装、运输、贮存和保质期,描述了相应的试验方法。

本文件适用于以凝结芽孢杆菌为菌种,经发酵生产、添加或不添加载体、干燥等工艺制得的饲料添加剂凝结芽孢杆菌。

3 术语和定义

参考《Bergey's Manual of Systematics of Archaea and Bacteria(2015)》和《常见细菌系统鉴定手册》,结合标准制定过程中凝结芽孢杆菌的特性,描述了凝结芽孢杆菌的术语如下:

凝结芽孢杆菌 Bacillus coagulans(凝结魏茨曼氏菌 Weizmannia coagulans、 凝结海恩德里克斯氏菌 Heyndrickxia coagulans):属于厚壁菌门、芽孢杆菌科、 海恩德里克斯氏菌属。单个细菌呈椭圆或杆状。具运动性。产芽孢,芽孢呈椭圆 形或球形,位于孢子囊中,中生到次端生。无鞭毛。革兰氏阳性。

4 凝结芽孢杆菌的鉴别试验

《中华人民共和国药典》2020 年版(ChP 2020)四部相关检查法和指导原则(通则1001、1021、9202、9204、9205、9206) 已提供了较为完备的微生物鉴定体系,多种现代鉴定技术均可实现对污染微生物"种"、"属"水平的鉴定。依据《伯杰氏系统细菌学手册》中的菌种形态鉴定和生理生化实验鉴定,并结合菌种的分子生物学鉴定方法可实现微生物的准确鉴定。

4.1 形态鉴定

菌体形态:参考《Bergey's Manual of Systematics of Archaea and Bacteria (2015)》和《常见细菌系统鉴定手册》操作步骤对凝结芽孢杆菌菌体和芽孢进行染色,显微镜下进行菌体形态观察。凝结芽孢杆菌单个细菌呈杆状。具运动性、产芽孢,芽孢呈椭圆形或球形,芽孢位于孢子囊中,偶尔位于菌体中心或末端;少量菌株不易产生孢子。

菌落形态: 挑取凝结芽孢杆菌单菌落划线于 MRS 固体培养基上,进行菌落形态观察。40°C 培养 48 h,菌落直径 0.5~3 mm,菌落呈白色凸起,表面光滑,边缘整齐;随着培养时间的延长,菌落颜色变成奶油色(图 1)。

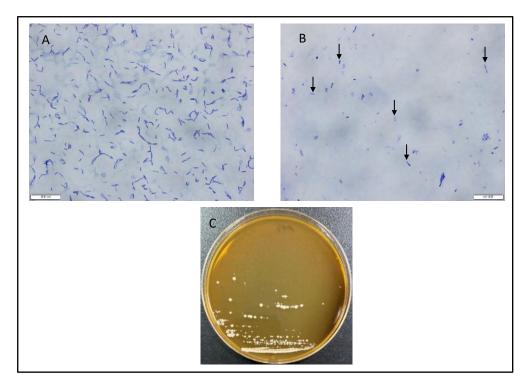


图 1-1: 凝结芽孢杆菌的菌体形态

注: A 凝结芽孢杆菌的菌体形态 (×100 倍油镜); B 凝结芽孢杆菌的芽孢形态 (×100 倍油镜); C 凝结芽孢杆菌的菌落形态

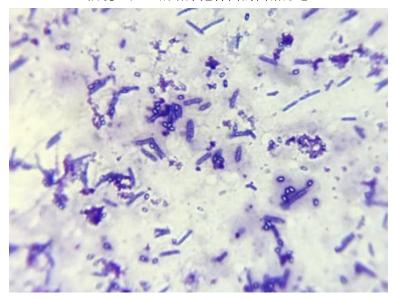


图 1-2: 凝结芽孢杆菌发酵过程中菌体形态

4.2 生理生化实验

凝结芽胞杆菌呈杆状,形成芽胞,从形态特征上不易与其它芽孢杆菌区分。 因此,选取常见的几种芽孢杆菌,根据《伯杰氏系统细菌学手册》(Bergey's Manual of Systematics of Archaea and Bacteria(2015))和《常见细菌系统鉴定手册》中 芽孢杆菌属种间鉴别特征,确定凝结芽孢杆菌的生理生化鉴定指标。

表 3: 生理生化

		表 3: 2	生埋生化			
特 征	凝结芽	枯草芽	地衣芽	短小芽	巨大芽	蜡样芽
17 111.	孢杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌
细胞直径>1.0μm	_	_	_	_	+	+
运动性	+	+	+	+	+	+
厌氧生长	+	_	+	_	_	+
接触酶	+	+	+	+	+	+
V-P 测定	d	+	+	+	_	+
D-葡萄糖产酸	+	+	+	+	+	+
D-甘露糖产酸	+	+	+	+	_	_
D-甘露醇产酸	_	+	+	+	+	_
L-阿拉伯糖产酸	d	+	+	+	+	_
D-木糖产酸	d	+	+	+	+	_
水解明胶	d	+	+	+	+	+
水解淀粉	+	+	+	_	+	+
水解酪蛋白	_	+	+	+	+	+
利用柠檬酸盐	_	+	+	+	+	+
利用丙酸盐		_	+	_		
卵黄反应	_	_	+	_	_	+
硝酸盐还原	_	+	+	_	d	d
生长 NaCl: 2%	+	+	+	+	+	+
生长 NaCl: 5%	_	+	+	+	+	+
生长 NaCl: 7%	_	+	+	+	+	d
生长 NaCl: 10%	_	d		+	_	
生长温度:5℃		d	_	d	d	
生长温度: 10℃		d	_	d	d	d
生长温度: 20℃		+	+	+	+	+
生长温度: 30℃	+	+	+	+	+	+
生长温度: 40℃	+	+	+	+	d	+
生长温度: 50℃	d	d	+	d	d	
生长温度: 55℃	d	d	d	_	d	
生长温度: 65℃	_	_	_	_	_	
		·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·

注: +, ≥90%菌株为阳性; -, ≥90%菌株为阴性; d, 11%~89%菌株为阳性。

4.2.1 细胞直径

不同芽孢杆菌染色后在显微镜下观察利用测微尺测定细胞大小,结果如图 2

所示。

表 4: 不同芽孢杆菌细胞直径

		PC	1 1 4 > 4 4 0	11 E3 F E 7 C			
特 征	凝结芽	枯草芽	地衣芽	短小芽	巨大芽	蜡样芽	解淀粉芽
村 11年	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	孢杆菌
细胞直径	_	_	_	_			
>1.0 μm						7	

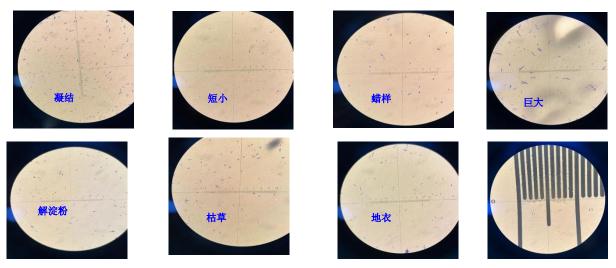


图 2: 不同芽孢杆菌在显微镜下的细胞大小

4.2.2 运动性

根据有鞭毛的细菌可以在半固体培养基中游动却又不能任意游走的现象,观察细菌生长情况,判定试验菌是否有运动性。具体操作为用直针穿刺接种试验菌于含 0.4%琼脂的半固体培养基中培养。如生长物只生长在穿刺线上,边缘十分清晰,则表示试验菌无运动性;如生长物由穿刺线向四周呈云雾状扩散,其边缘呈云雾状,则表示试验菌有运动性。将不同芽孢杆菌置于厌氧培养箱进行培养中,观察生长情况。

图 3: 不同芽孢杆菌的运动性

表 5: 不同芽孢杆菌的运动性和厌氧生长情况

特征	凝结芽 胞杆菌	枯草芽 胞杆菌	地衣芽 胞杆菌	短小芽 胞杆菌	巨大芽 胞杆菌	蜡样芽 胞杆菌	解淀粉芽 孢杆菌
运动性	+	+	+	+	+	+	+
厌氧生长	+	_	+	_	_	+	_

4.2.3 接触酶

将 24h 培养的斜面菌,以接种环取一小环涂抹于已滴有 3%过氧化氢的玻片上,如有气泡产生则为阳性,无气泡则为阴性。不同芽孢杆菌的接触酶特征如图 4 和表 6 所示。7 种芽孢杆菌均为接触酶阳性。

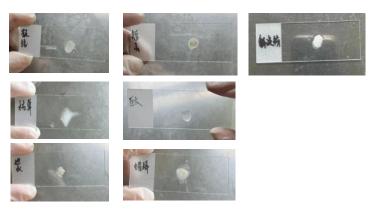


图 4: 不同芽孢杆菌接触酶试验结果

表 6: 不同芽孢杆菌的接触酶特征

特 征	凝结芽	枯草芽	地衣芽	短小芽	巨大芽	蜡样芽	解淀粉芽
1寸 111.	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	孢杆菌
接触酶	+	+	+	+	+	+	+

4.2.4 VP 试验

培养基:蛋白胨 7g,葡萄糖 5g,磷酸氢二钾 5g,水 1000ml,pH 7~7.2。操作步骤:单菌落到上述培养基,37℃,24 h。加 3 滴 vp 试剂甲液,1 滴乙液,震荡。红色为阳性,若为黄色,继续培养 4 h 观察。不同芽胞杆菌 VP 试验结果如图 5 和表 7 所示。

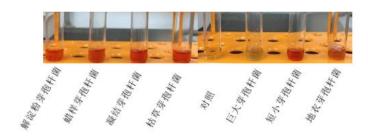


图 5: 不同芽孢杆菌 VP 试验结果

表 7: 不同芽孢杆菌的 V-P 测定结果

特 征	凝结芽	枯草芽	地衣芽	短小芽	巨大芽	蜡样芽	解淀粉芽
177 111.	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	孢杆菌
V-P 测定	+	+	+	+		+	+

4.2.5 水解酪蛋白

将不同芽胞杆菌划线于牛奶平板上培养,若菌落周围被分解透明即为阳性, 否则为阴性。不同芽胞杆菌水解酪蛋白特性不同,结果如图 6 和表 8 所示。

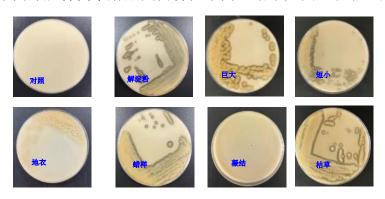


图 6: 不同芽孢杆菌酪蛋白水解试验结果

表 8: 不同芽孢杆菌的水解酪蛋白测定结果

特 征	凝结芽 胞杆菌	枯草芽 胞杆菌	地衣芽 胞杆菌	短小芽 胞杆菌	巨大芽 胞杆菌	蜡样芽 胞杆菌	解淀粉芽 孢杆菌
水解酪蛋白	_	+	+	+	+	+	+

4.2.6 水解淀粉

将不同芽胞杆菌划线于添加 0.2%可溶性淀粉的固体培养平板上,培养 2-5 天形成明显菌落后,在平板上滴加碘液平板呈蓝黑色,菌落周围如有不变色透明 圈,表示淀粉水解阳性,仍是蓝黑色为阴性。不同芽胞杆菌水解淀粉特性不同, 结果如图 7 和表 9 所示。

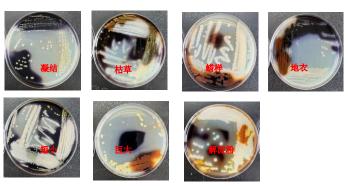


图 7: 不同芽孢杆菌水解淀粉结果

表 9: 不同芽孢杆菌的水解淀粉结果

特 征	凝结芽 胞杆菌	枯草芽 胞杆菌	地衣芽 胞杆菌	短小芽 胞杆菌	巨大芽 胞杆菌	蜡样芽 胞杆菌	解淀粉芽 孢杆菌
水解淀粉	_	+	+	_	+	+	+

4.2.7 利用柠檬酸盐

将不同芽胞杆菌划线于含 0.2%柠檬酸钠和酚红液指示剂的固体斜面上,30℃ 培养 3-7 天。培养基为碱性(指示剂桃红色)者为阳性,否则为阴性。不同芽孢杆菌利用柠檬酸盐的结果不同,如图 8 和表 10 所示。

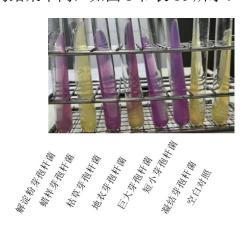


图 8: 不同芽孢利用柠檬酸盐结果

表 10: 不同芽孢杆菌的利用柠檬酸盐结果

特 征	凝结芽 胞杆菌	枯草芽 胞杆菌	地衣芽 胞杆菌	短小芽 胞杆菌	巨大芽 胞杆菌	蜡样芽 胞杆菌	解淀粉芽 孢杆菌
利用柠檬酸盐	_	+	+	+	+	_	+

4.2.8 利用丙酸盐

将不同芽胞杆菌接种于含 0.3%丙酸盐和溴百里酚蓝指示剂的液体培养基中, 培养 1-3 天。培养基由绿变蓝者为阳性,培养基不变色为阴性。

图 9: 不同芽孢利用丙酸盐结果

表 11: 不同芽孢杆菌的利用丙酸盐结果

特 征	凝结芽	枯草芽	地衣芽	短小芽	巨大芽	蜡样芽	解淀粉芽
	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	孢杆菌
利用丙酸盐	_	_	+	+	+	_	_

4.2.9 水解明胶

配制含 0.5%蛋白胨, 15%明胶的培养基。取不同芽孢杆菌培养物穿刺接种, 于 20℃中培养, 观察菌的生长情况及明胶液化现象。如菌已生长, 明胶表面无凹陷且为稳定的凝块, 则为明胶水解阴性。如明胶凝块部分或全部在 20℃以下变为可流动的液体, 则为明胶水解阳性。如菌已生长, 明胶未液化, 但明胶表面菌苔下出现凹陷小窝, 也是轻度水解, 按阳性记录。

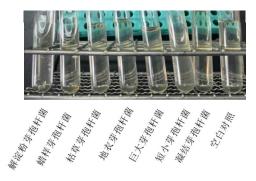


图 10: 不同芽孢杆菌水解明胶结果

表 12: 不同芽孢杆菌水解明胶结果

特 征	凝结芽	枯草芽	地衣芽	短小芽	巨大芽	蜡样芽	解淀粉芽
	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	孢杆菌
水解明胶	_	_	_	+	_	+	+

4.2.10 卵黄反应

将不同芽胞杆菌在卵黄平板上划线培养 3-7 天,如菌落周围和下面有不透明 的区域出现,表明芽孢杆菌分解卵磷脂生成脂肪,即为阳性。否则为阴性。

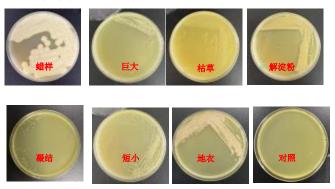


图 11: 不同芽孢杆菌卵黄反应结果

表 13: 不同芽孢杆菌卵黄反应结果

特 征	凝结芽	枯草芽	地衣芽	短小芽	巨大芽	蜡样芽	解淀粉芽
	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	孢杆菌
卵黄反应	_	_	_	_	l	+	

4.2.11 甘露糖产酸

将不同芽孢杆菌接种于甘露糖作为唯一碳源的培养基中,同时添加溴甲酚紫作为指示剂进行培养。观察培养基颜色由紫变黄为阳性,培养基不变色为阴性。不同芽孢杆菌甘露糖产酸结果如图 12 和表 14 所示。

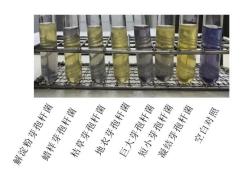


图 12: 不同芽孢杆菌甘露糖产酸结果

表 14: 不同芽孢杆菌甘露糖产酸结果

特 征	凝结芽	枯草芽	地衣芽	短小芽	巨大芽	蜡样芽	解淀粉芽
特征	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	孢杆菌
甘露糖产酸	+	+	+	+	1	+	+

4.2.12 葡萄糖产酸

将不同芽孢杆菌接种于葡萄糖作为唯一碳源的培养基中,同时添加溴甲酚紫作为指示剂进行培养。观察培养基颜色由紫变黄为阳性,培养基不变色为阴性。不同芽孢杆菌甘露糖产酸结果如图 13 和表 15 所示。

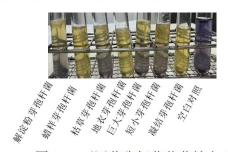


图 13: 不同芽孢杆菌葡萄糖产酸结果

表 15: 不同芽孢杆菌葡萄糖产酸结果

特征	凝结芽	枯草芽	地衣芽	短小芽	巨大芽	蜡样芽	解淀粉芽
	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	孢杆菌
葡萄糖产酸	+	+	+	+	+	+	+

4.2.13 甘露醇产酸

将不同芽孢杆菌接种于甘露醇作为唯一碳源的培养基中,同时添加溴甲酚紫作为指示剂进行培养。观察培养基颜色由紫变黄为阳性,培养基不变色为阴性。不同芽孢杆菌甘露醇产酸结果如图 14 和表 16 所示。

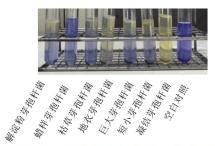


图 14: 不同芽孢杆菌甘露醇产酸结果

表 16: 不同芽孢杆菌甘露醇产酸结果

特 征	凝结芽 胞杆菌	枯草芽 胞杆菌	地衣芽 胞杆菌	短小芽 胞杆菌	巨大芽 胞杆菌	蜡样芽 胞杆菌	解淀粉芽 孢杆菌
甘露醇产酸	+	+	+	+	+	-	+

4.2.14 木糖产酸

将不同芽孢杆菌接种于木糖作为唯一碳源的培养基中,同时添加溴甲酚紫作为指示剂进行培养。观察培养基颜色由褐变黄为阳性,培养基不变色为阴性。不同芽孢杆菌木糖产酸结果如图 15 和表 17 所示。

图 15: 不同芽孢杆菌木糖产酸结果

表 17: 不同芽孢杆菌木糖产酸结果

特征	凝结芽 胞杆菌	枯草芽 胞杆菌	地衣芽 胞杆菌	短小芽 胞杆菌	巨大芽 胞杆菌	蜡样芽 胞杆菌	解淀粉芽 孢杆菌
木糖产酸	+	+	-	+	-	-	+

4.2.15 阿拉伯糖产酸

将不同芽孢杆菌接种于阿拉伯糖作为唯一碳源的培养基中,同时添加溴甲酚 紫作为指示剂进行培养。观察培养基颜色由褐变黄为阳性,培养基不变色为阴性。不同芽孢杆菌阿拉伯糖产酸结果如图 16 和表 18 所示。

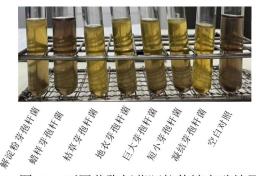


图 16: 不同芽孢杆菌阿拉伯糖产酸结果

表 18: 不同芽孢杆菌阿拉伯糖产酸结果

特 征	凝结芽 胞杆菌	枯草芽 胞杆菌	地衣芽 胞杆菌	短小芽 胞杆菌	巨大芽 胞杆菌	蜡样芽 胞杆菌	解淀粉芽 孢杆菌
阿拉伯糖产酸	+	+	+	+	+	-	+

4.2.16 硝酸盐还原

将不同芽孢杆菌接种于硝酸盐液体培养基中培养,在培养液中分别添加格里斯氏(Griess)试剂 A 液和 B 液各 1 滴后,当培养液中滴加 A,B 液后,溶液变为粉红色、玫瑰红色、橙色、棕色等表示亚硝酸盐存在,为硝酸盐还原阳性。如无红色出现,则可滴加 1 滴苯胺试剂,此时如呈蓝色反应,则表示培养液中仍有硝酸盐,又无亚硝酸盐反应,表示无硝酸盐还原作用;如不呈现蓝色反应,表示硝酸盐和形成亚硝酸盐都已还原成其他物质,故仍应按照硝酸盐还原阳性处理。不同芽孢杆菌硝酸盐还原结果如图 17 和表 19 所示。

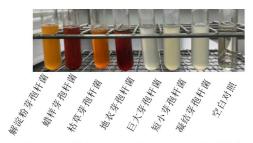



图 17: 不同芽孢杆菌硝酸盐还原结果

表 19: 不同芽孢杆菌硝酸盐还原结果

	特 征	凝结芽 胞杆菌	枯草芽 胞杆菌	地衣芽 胞杆菌	短小芽 胞杆菌	巨大芽 胞杆菌	蜡样芽 胞杆菌	解淀粉芽 孢杆菌
ſ	硝酸盐还原	-	+	+	-	-	+	+

4.2.17 耐盐性

将不同芽孢杆菌依次接种于不同浓度 NaCl(2%、5%、7%、10%)的培养中培养 3 和 7 天,与未接种的对照管对比,观察生长情况。不同芽孢杆菌的耐盐性如图 18 和表 20 所示。不同芽孢杆菌在 7%NaCl 条件下出现生长差异。

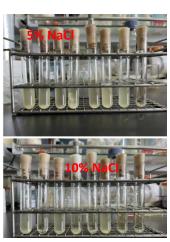


图 18: 不同芽孢杆菌的耐盐性结果

注:每个 NaCl 浓度下左至右分别为解淀粉芽孢杆菌,蜡样芽孢杆菌,枯草芽孢杆菌, 地衣芽孢杆菌,巨大芽孢杆菌,短小芽孢杆菌,凝结芽孢杆菌,空白对照。

表 20: 不同芽孢杆菌的耐盐性结果

特征	凝结芽	枯草芽	地衣芽	短小芽	巨大芽	蜡样芽	解淀粉芽
11 111.	孢杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	胞杆菌	孢杆菌
生长 NaCl: 2%	+	+	+	+	+	+	+
生长 NaCl: 5%	+	+	+	+	+	+	+
生长 NaCl: 7%		+	+	+	_	_	+
生长 NaCl: 10%	_	+	_	+	_	_	+

4.2.18 生长温度

将不同芽孢杆菌依次不同温度下进行培养,与未接种的对照管对比,观察生长情况。不同芽孢杆菌的耐盐性如图 19 和表 21 所示。

图 19: 不同芽孢杆菌的生长温度

注:每个温度下左至右分别为解淀粉芽孢杆菌,蜡样芽孢杆菌,枯草芽孢杆菌,地衣芽孢杆菌,巨大芽孢杆菌,短小芽孢杆菌,凝结芽孢杆菌,空白对照。

表 21: 不同芽孢杆菌的生长温度

生长温度	凝结芽 孢杆菌	枯草芽 胞杆菌	地衣芽 胞杆菌	短小芽 胞杆菌	巨大芽 胞杆菌	蜡样芽 胞杆菌	解淀粉芽孢 杆菌
5°C	_	_	_	_	_	_	_
10°C	_	_	_	_	_		_
20°C	+	+	+	+	+	+	+
30°C	+	+	+	+	+	+	+
40°C	+	+	+	+	+	+	+
50°C	+	+	+	+			+
55°C	+	+	+	_	_	_	+
65°C	_	_	_	_	_	_	_

4.2.19 生理生化指标确认

根据以上生理生化结果,以及不同芽孢杆菌的特性差异,选择了厌氧生长、水解酪蛋白、利用柠檬酸盐、7%NaCl生长、55℃生长、接触酶及 D-葡萄糖产酸作为凝结芽孢杆菌生理生化鉴别指标。另外,不同凝结芽孢杆菌菌种反应结果可能不同的指标(例如 V-P 测定、L-阿拉伯糖产酸、水解明胶、硝酸盐还原等)未列入。

特征	结果	特征	结果		
厌氧生长	+	接触酶	+		
D-葡萄糖产酸	+	水解酪蛋白	_		
生长 NaCl: 7%	_	利用柠檬酸盐	_		
生长温度: 55℃	+				
注: +,≥90%菌株为阳性; -,≥90%菌株为阴性。					

表 22: 生理生化指标

4.3 分子生物学鉴定实验

目前国际上公认和普遍采用的细菌分类系统是伯杰氏分类系统,"原核生物"系统是根据 16S rRNA 序列同源性建立的系统发育体系。除此之外,细菌的基因组中有很多功能基因,这些基因在系统进化过程中非常保守,但相对于 16S rRNA基因变异速率快,能够代表种以下分类单元的进化方向,如 gyrB、gyrA、rpoB、rpoD、recA、purH、polC、groEL、sodAint、toxR、rctB等。近几年解旋酶基因(gyrB)在菌种分类和鉴定上的意义日显突出。有研究者比较了 16S rRNA基因和基因序列,发现枯草群各种、亚种的 gyrB 基因相似性在 75%~95%之间,比16S rRNA有更好的区分效果,认为 gyrB 基因是非常好的替代靶基因。因此,我们在试验中验证了 16S rRNA和 gyrB 基因序列比对的结果。

4.3.1 16S rRNA 序列分析

16S rRNA 存在于所有细菌,其核苷酸数目约 1540 bp,包含 9 个可变区和 10 个保守区。16S rRNA 前 500 bp 序列变化较大,包含细菌种属的特异性信息。对于大多数菌株来说只需要扩增前 500 bp 的序列,即可鉴定出细菌的菌属。目前,16S rRNA V3-V4 区测序是菌种分析的最佳选择。对于前 500 bp 无法鉴定的菌株,则需要扩增全序列,以获得完整的 16S rRNA 序列。16S rRNA 部分扩增

和全长扩增均可用于菌株鉴定和菌群分析,全长 16S rRNA 测序在鉴定细菌到种和株水平上的精度高于部分扩增。因此,本实验采用扩增全长 16S rRNA 序列进行比对分析。

基因组 DNA 提取:采用细菌基因组试剂盒提取芽孢杆菌基因组 DNA。16S rRNA 扩增引物序列: 27F: 5'-AGTTTGATCMTGGCTCAG-3'; 1492R: 5'-TACGGYTACCTTGTTACGACTT-3'。PCR 反应: PCR 扩增体系(25 μ L)包括:无菌水 16 μ L,10×Easy Taq Buffer 2.5 μ L,dNTPs(2.5 μ mmol/L) 3.125 μ L,上下游引物(10 μ mol/L)各 1.25 μ L,Easy Taq DNA polymerase 0.3 μ L,DNA 模板 1.5 μ L;PCR 扩增程序: 94°C预变性 5 min;94°C变性 30 s,55°C退火 30 s,72°C延伸 2 min,35 个循环;72°C终延伸 10 min。PCR 扩增片段为 1.5kb,委托公司进行序列测定。分别将测序得到的不同芽孢杆菌 16S rRNA 序列在 NCBI 网站进行比对,结果如表 23 所示。

表 23: 不同芽孢杆菌 16S rRNA 序列的 BLAST 比对结果

	菌株	16S rRNA 序列	比对结果
1	解淀粉芽孢杆菌	>GGAAGTGCGGGTGCTATAATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAG CGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAAC CGGGGCTAATACCGGATGCTTTGTTTGAACCGATGGTTCAGACATAAAAAGGTGGCTTCCGCTAC CACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGCCTCACCACTAGCACCACCACTTAAGCCGACCCCACACTGAGACACGCCCAGACTCCT ACGGGAGGCAGCAGTAGGGAATCTCCCGCAATGGACACGGCCCAGACTCCT ACGGGAGGCAGCAGTAGGGAATCTCCCGCAATGGACAAGTCTGACGAGCAACGCCCGCGT GAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTTGTGAGGAAAACACTGCCGTCAAAT AGGGCGGCACCTTGACGGTACCTAAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCCGCG GTAATACGTAGGTGCAAGCCGTTGTCCGGAATTATTGGGCGTAAATGACGTGCCAGCAGCCGCG GTAATACGTAGGTGGAAAGCCCCCGGCTCAACCGGGGGAGGTCATTGGAAACTGCGGAACTTCT TAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGGGGGTCATTGGAAACTGGGGAACCTTGA GTGCAGAAGAGAGGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAAGAGTTGGAGGAAC ACCACTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTTGGGGGAC GAACAGGATTAGATACCCTGGTAGCCGCTGAAACGATGAGTGCTAAGTGTTAGGGGGTT CCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAATACGTTCGAAGACT GAAACTCAAAGGAATTGACGGGGCCCCCGCACAAGCCTCTGGGGACTACGGTTCAAAGC AACGCAAGAACACTAACCAGTTTGACATCCTCTGACAATCCTAGAGTGTTTAATTCGAAC ACCGCAACAAGGAATGACAGCTTGACATCCTCTGACAATCCTAGAGATGTTGGGTTAAG TCCCGCAACGAGCGCAACCCTTGATCTTAGTTTCCACGTTCAGTTGGAATGTTGGGTTAAG TCCCGCAACGAGCGCAACCCTTGATCTTTAGTTTCCACGTCCTGTGAGATGTTGGGTTAAG TCCCGCAACGAGCGCAACCCTTGATCTTTAGTTTCCACGTCCATTCAGTTGGGCACTTCAAGGTGACT GCCGGTGACAAACCCGGAGGAACAATCATCTTAGTTTCCACATCCAAATCATCATGCCCCCTTTAAGGTGACT GCCGGTGACAAACCCGGAGGAACAAAAGGGCAGCAACCCTTGATCTTAGCTTCCACATCCAACACGGGTGAAACCCTAAGCCAACCCACAACCCTTGATCTTAGCTTCCACACTCCCCTTCTAAGGTGACATCCC ACAAATCTGTTCCAGTTCCGAGTCTCCCGGCCCGCACACA AACCCGGAGGAATCCCTTCCGATCCCCCTTCTAAGCTTGACCTAGCT AATCGCGGATCACATCCCACACCCCCCCCACAACCCCCCCC	Description Scientific Name Max Total Query E Per Acc. Score Score Cover value Ident. Len Accession Bacillus amyloliquefaciens strain Ba13 16S ribosomal RNA gene. partial sequence Bacillus amyloliquefaciens 2641 2641 99% 0.0 99.93% 1444 MG346076.1
2	蜡样芽孢杆菌	SGACTTTGGGGGGTGCTATAATGCAAGTCGAGCGAATGGATTAAGAGCTTTGCTCTTATGAAG TTAGCGGCGGACGGTGAGTAACACGTGGGTAACCTGCCCATAAGACTGGGATAACTCCGGGA AACCGGGGCGACGGTGAGTAACACTTTGAAACNGCATGGTTCGAAATTGAAAGGCTCAGG CTGTCACTTATGGATGGACCGCGCTCGCATTAGCTAGTTGTAGAAGCTCGGGAAACGGCGCTAACCCGAGCTCGCCATAAGACTGGAAACTCCGGGA ACGATGCGTAGCCGACCTGAGAGGGGATCCGCATTAGCTAGTTGGTGAGGTAACCGGCCCAGACT CCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGACCAACGCCC CGTGAGTGATGAAGGCTTTCGGGTCGTAAAACTCTGTTTGTT	Bacillus cereus strain CZ 16S ribosomal RNA gene partial sequence Bacillus cereus 2652 2652 99% 0.0 99 93% 1454 US-14747.1

2 ++-	古 #: 75 kr #:	>GACGTGCGGGTGCTATAATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGC GGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACC	☑ Bacillus subtilis strain T0-4.16S ribosomal RNA gene, partial sequence	Bacillus subtilis	2652 2652 99% 0.0 100.00% 1447 MN330078 1
3 枯草	草芽孢杆菌				
		GGGGCTAATACCGGATGGTTGTTTGAACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACC	Bacillus subtilis strain SMF1.16S ribosomal RNA gene_partial sequence	Bacillus subtilis	2649 2649 99% 0.0 99.93% 1444 <u>OK035217.1</u>
		ACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGA			
		TGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTA			
		CGGGAGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTG			
		AGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATA			
		GGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGT			
		AATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTA			
		AGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGT			
		GCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACAC			
		CAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGA			
		ACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGGTTTCC			
		GCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGA			
		AACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAA			
		CGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCTAGAGATAGGACGTCCCCTTCGG			
		GGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTGAGATGTTGGGTTAAGTC			
		CCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTG			
		${\tt CCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGC}$			
		TACACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCA			
		CAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTA			
		ATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACC			
		ACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTTAGGAGCCAGCC			
		>TACTAGCGATTCCAGCTTCACGCAGTCGAGTTGCAGACTGCGAACTGAGAACAGATTT			
4 抽 7	衣芽孢杆菌	GTGGGATTGGCTTAGCCTCGCGGCTTCGCTGCCCTTTGTTCTGCCCATTGTAGCACGTGTGAG	☑ Bacillus licheniformis strain SRCM103583 chromosome, complete genome	Bacillus licheniformis	2854 22689 100% 0.0 100.00% 4419047 CP035404.1
4 161	(A) TETI 图	CCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCA	Decines incremioning seam order resistant annual medical seam of the resistant of the resistant of the resistant order resista	Datalida introllinollilla	2004 22000 10010 0.0 100.0070 4413047 01.002404.1
		GTCACCTTAGAGTGCCCAACTGAATGCTGGCAACTAAGATCAAGGGTTGCGCTCGTTGCGGGA			
		CTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGCACCACCTGTCACTCTGCCCCC			
		GAAGGGGAAGCCCTATCTCTAGGGTTGTCAGAGGATGTCAAGACCTGGTAAGGTTCTTCGCGT			
		TGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTCA			
		GTCTTGCGACCGTACTCCCCAGGCGGAGTGCTTAATGCGTTTGCTGCAGCACTAAAGGGCGGA			
		AACCCTCTAACACTTAGCACTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTCGC			
		TCCCCACGCTTTCGCGCCTCAGCGTTACAGACCAGAGAGTCGCCTTCGCCACTGGTGTT			
		CCTCCACATCTCTACGCATTTCACCGCTACACGTGGAATTCCACTCTCCTCTTCTGCACTCAAGT			
		TCCCCAGTTTCCAATGACCCTCCCCGGTTGAGCCGGGGGCTTTCACATCAGACTTAAGAAACC			
		GCCTGCGCGCGCTTTACGCCCAATAATTCCCGGACAACGCTTGCCACCTACGTATTACCGCGGC TGCTGGCACGTAGTTAGCCGTGCTTTCTGGGTTAGGTACCGTCAAGTGCCGCCCTATTCGAACG			
		GTACTTGTTCTTCCCTAACAACAGAGTTTTACGATCCGAAAAACCTTCATCACCTCACGCGCGTG			
		CTCGTCAGACTTTCGTCCATGCGAGATCCCTACTGCTGCCTCCGTAGGAGTCTGGCGGTCTCAG			
		TTCCAGTGTGCGATCACATCTCAGGTCGGCTACGCATCGTGCCTCCGTAGGAGTCTGGCGGTCTCACGTTCCAGGTCGCGATCACCATCTCACCAT			
		CTAGCTTATATCGCCCCGCGGG			
\vdash					
. -		>GGGGGGGGTGCTATACATGCAAGTCGAGCGAACTGATTAGAAGCTTGCTT	Description	Outputte to	Max Total Query E Per. Acc.
5 巨	大芽孢杆菌	GGCGGACGGGTGAGTAACACGTGGGCAACCTGCCTGTAAGACTGGGATAACTTCGGGAAACC	Description	Scientific Name	Score Score Cover value Ident Len Accession
		GAAGCTAATACCGGATAGGATCTTCTCCTTCATGGGAGATGATTGAAAGATGGTTTCGGCTATCA	Bacillus megaterium strain L36 16S ribosomal RNA gene, partial sequence	Priestia megaterium	2667 2667 99% 0.0 100.00% 1488 KU179342.1
		CTTACAGATGGGCCCGCGGTGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGAT			SECTION TO THE PROPERTY OF SECTION AND SECTION OF SECTION SECT
		GCATAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTAC			
		GGGAGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGA			
		GTGATGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAGAACAAGTACAAGAGTAACTG			
		CTTGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAA			
		TACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGC			
		TCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGAACTTGAGTGC			
		AGAAGAGAAAAGCGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCA			
		GTGGCGAAGGCGGCTTTTTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAAC			
		AGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGC			
1 1	I	CCTTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAA			

		CTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACG			
		CGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACTCTAGAGATAGAGCGTTCCCCTTCGGG			
		GGACAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGAGATGTTGGGTTAAGTC			
		CCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTTAGTTGGGCACTCTAAGGTGACTGC			
		CGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCT			
		ACACACGTGCTACAATGGATGGTACAAAGGGCTGCAAGACCGCGAGGTCAAGCCAATCCCATA			
		AAACCATTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGCTGGAATCGCTAGTAAT			
		CGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCAC			
		GAGAGTTTGTAACACCCGAAGTCGGTGGAGTAACCGTAAGGAGCTAGCCGCCTAAGGTTACCC			
		AC			
		>TTGGGTCCCCTTTCGGCGGCTGGCTCCATAAAGGTTACCTCACCGACTTCGGGTGTTGCAAAC			
6	短小芽孢杆菌	TCTCGTGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCATGCTGATC	Bacillus pumilus strain Lmb059 16S ribosomal RNA gene, partial sequence	Bacillus pumilus	2658 2658 99% 0.0 100.00% 1453 KT986124.1
0	短小牙甩们困	CGCGATTACTAGCGATTCCAGCTTCACGCAGTCGAGTTGCAGACTGCGATCCGAACTGAGAAC	Data da musa sa an Emposo no mosomar na gene, santar sequence	Dacinos ponnos	2000 2000 33 # 0.0 100.00 # 1453 (1300124.1
		AGATTTGTGGGATTGGCTAAACCTTGCGGTCTCGCAGCCCTTTGTTCTGTCCATTGTAGCACGT GTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCA			
		CCGGCAGTCACCTTAGAGTGCCCAACTGAATGCTGGCAACTAAGATCAAGGGTTGCGCTCGTT			
		GCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGCACCACCTGTCACTCT			
		GTCCCCGAAGGGAAAGCCCTATCTCTAGGGTTGTCAGAGGTTGTCAAGACCTGGTAAGGTTCT			
		TCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGA			
		GTTTCAGTCTTGCGACCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAGCTGCAGCACTAAGG			
		GGCGGAAACCCCCTAACACTTAGCACTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCC			
		TGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAGTTACAGACCAGAGAGTCGCCTTCGCCACT			
		GGTGTTCCTCCACATCTCTACGCATTTCACCGCTACACGTGGAATTCCACTCTCCTCTTCTGCAC			
		TCAAGTTTCCCAGTTTCCAATGACCCTCCCCGGTTGAGCCGGGGGCTTTCACATCAGACTTAAG			
		AAACCGCCTGCGAGCCCTTTACGCCCAATAATTCCGGACAACGCTTGCCACCTACGTATTACCG			
		CGGCTGCTGGCACGTAGCTTAGCCGTTGCTTTCTGGTTAGGTACCGTCAAGGTGCAAGCAGTTA			
		CTCTTGCACTTGTTCTTCCCTAACAACAGAGCTTTACGATCCGAAAACCTTCATCACTCAC			
		GCGTTGCTCCGTCAGACTTTCGTCCATTGCGGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTC			
		TGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTACGCATCGTCGCCTT			
		GGTGAGCCGTTACCTCACCAACTAGCTAATGCGCCGCGGGTCCATCTGTAAGTGACAGCCGAA			
		ACCGTCTTTCATCCTTGAACCATGCGGTTCAAGGAACTATCCGGTATTAGCTCCGGTTTCCCGG			
		AGTTATCCCAGTCTTACAGGCAGGTTACCCACGTGTTACTCACCCGTCCGCCGCTAACATCCGG			
		GAGCAAGCTCCCTTCTGTCCGCTCGACTGCATGTATAGCACCCCCCGC			
		>CGGCTGGCTCGTAAGGTTACCTCACCGACTTCGGGTGTTACAAACTCTCGTGGTGTGACGGG			
1 7	凝结芽孢杆菌	CGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCATGCTGATCCGCGATTACTAGCGATTC	✓ Weizmannia coagulans strain 3989 16S ribosomal RNA gene, partial sequence	Heyndrickxia coagulans	2582 2582 100% 0.0 99.93% 1454 <u>MT538813.1</u>
		CGGCTTCATGCAGGCGGGTTGCAGCCTGCAATCCGAACTGGGAATGGTTTTCTGGGATTGGCTT			
		AACCTCGCGGTCTCGCAGCCCTTTGTACCATCCATTGTAGCACGTGTGTAGCCCAGGTCATAAG			
		GGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCACCTTAGAGT			
		GCCCAACTGAATGCTGGCAACTAAGGTCAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACAT			
		CTCACGACACGAGCTGACGACAACCATGCACCACCTGTCACTCTGTCCCCCGAAGGGGAAGG			
		CCCTGTCTCCAGGGAGGTCAGAGGATGTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATT			
		AAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTCAGCCTTGCGGCC			
		GTACTCCCCAGGCGGAGTGCTTAATGCGTTAGCTGCAGCACTAAAGGGCGGAAACCCTCTAAC			
		ACTTAGCACTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTT			
		TCGCGCCTCAGCGTCAGTTACAGACCAGAGAGCCGCCTTCGCCACTGGTGTTCCTCCACATCT			
		CTACGCATTTCACCGCTACACGTGGAATTCCACTCTCCTCTTCTGCACTCAAGCCTCCCAGTTTC			
		CAATGACCGCTTGCGGTTGAGCCGCAAGATTTCACATCAGACTTAAGAAGCCGCCTGCGCGCG			
		CTTTACGCCCAATAATTCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTA			
		GTTAGCCGTGGCTTCTGGCCGGGTACCGTCAAGGCGCCCCTGTTCGAACGGCACTTGTTC			
		TTCCCCGGCAACAGAGTTTTACGACCCGAAGGCCTTCTTCACTCAC			
		GACTTTCGTCCATTGCGGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTTTGGGCCGTGTCTCA			
		GTCCCAATGTGGCCGATCACCCTCTCAGGTCGGCTACGCATCGTTGCCTTGGTGAGCCGTTACC			
		CCACCAACTAGCTAATGCGCCGCGGGCCCATCTGTAAGTGACAGCCGAAGCCGTCTTTCCTTTT			
		TCCTCCATGCGGAGGAAAAAACTATCCGGTATTAGCCCCGGTTTCCCGGCGTTATCCCGATCTTA			
		CAGGCAGGTTGCCCACGTGTTACTCACCCGTCCGCCGCTAACCTTTTAAAAGCAAGC			
		CAGGCAGGTTGCCCACGTGTTACTCACCGTCCGCCGCTAACCTTTTAAAAGCAAGC			

4.3.2 gyrB 基因序列分析

基因组 DNA 提取: 采用细菌基因组试剂盒提取凝结芽孢杆菌基因组 DNA。 *gyrB* 扩增引物序列: F: 5'-GAAGTCATCATGACCGTTCTGCAYGCNGGNGGNAARTTYGA-3', R: 5'-AGCAGGGTACGGATGTGCGAGCCRTCNACRTCNG CRTCN GTCAT-3'。 PCR 反应: PCR 扩增体系(25 μL)包括: 无菌水 16 μL,10×Easy Taq Buffer 2.5 μL,dNTPs(2.5 mmol/L) 3.125 μL,上下游引物(10 μmol/L)各 1.25 μL,Easy Taq DNA polymerase 0.3 μL,DNA 模板 1.5 μL;PCR 扩增程序: 94℃预变性 5 min;94℃ 变性 30 s,62℃退火 1 min,72℃延伸 2 min,35 个循环;72℃终延伸 10 min。PCR 扩增片段为 1.1 kb。委托公司进行序列测定。分别将测序得到的不同芽孢杆菌 *gyrB* 基因序列在 NCBI 网站进行比对,结果如表 24 所示。

表 24: 基因序列

	菌株	gyrB 基因序列	比对结果	
	解淀粉芽孢杆菌	>ACGCCTTATCGACCACTCTTGACGTAACGGTTCATCGTGACGGGAAAATCCATTATCAGG CGTATGAACGCGGTGTACCGGTGGCCGATCTTGAAGTCGGTGATACTGATAAGACCG GAACGATTACGCACTTTGTTCCTGATCCGGAAATTTTCAAAGAAACAACCGTATACGACTA TGATCTGCTTTCAAACCGTGTCCGGAAATTTTCAAAGAACAACACCGTATACGACTA TGATCTGCTTTCAAACCGTTGATGACGGAAATTGCCTTCCTGACAAAAGGGCGTCAACATCAC GATTGAAGACAAACGTGAAGGACAAGAACGGAAAAACGAGTACCACTACGAAGGCGGA ATCAAAAGCTAACGTTGAAGTACTTTCAAACCGTTTCAAAAGAAGTCGTTCATGAAGAGCCGATT TATATCGAAGGCGAGAAAGACGGCATAACCGTTCAAAAGAACTCGTTCATGAAGAAGCCGATT AAAGCAACATTTATTCTTTCACGAATAAACAGTATGAAGAGAGCGGACCGATG AAGCCGGATTTAAAACCGTTTAAACCGTTGCAAAACGACAGAAGAAGAAAAGGAA TTTTCAAAGAAAATGATCCGAATCTGAGCGGTGATTAAAACGACTATGAAGAAAAAGAAAACAAAC	Description Bacillus so. L381 chromosome .comolete genome Bacillus amyloliquefaciens strain 35M chromosome .comolete genome	Scientific Name Max Total Query E Per Acc.
2	2 蜡样芽孢杆菌	>GTATGCTCTATCACAGAATTAGAAGTATTTGTACATCGTGAAGGTAAAATCCATTATCAAA AATACGAAAGAGGTATTCCGGTTGCAGATTTAAAAGTCATTGGTACAACACGAG GAACAATAACTCGATTTAAACCAGATCCGGAAAATTTTCCAAGAAACAACAGTATACGATTT TGATACGCTAGCAACTCGTATGCGTGAATTAGCGTTTTTAAATCGTAATATTAAATTAACAA	Bacillus thuringensis strain SCG84-92 chromosome .comdete genome Bacillus cereus strain BG33 chromosome .comdete genome Bacillus cereus strain BG33 chromosome .comdete genome Bacillus thuringiensis seroora zoorensis strain IEBC-T64 001 DNA topoisomerase II ATP-hydrolyzing DNA gyrase s Bacillus cereus strain WTP-WVX-zhomosome .comdete genome	Bacillus thumpje. 1978 1978 99% 0.0 99.63% 5329341 CP07277-1 Bacillus cereus 1978 1978 1978 99% 0.0 99.63% 5325341 CP07277-1 Bacillus cereus 1978 1978 1978 99% 0.0 99.63% 1897 EF210272.1 Bacillus cereus 1973 1973 1997 99% 0.0 99.63% 328844 CP052289.1

		TTG. A.C.T. A.C.T. A.C.T. A.C. A.A.C. A.C.				
		TTGAAGATAAACGTGAACATAAGCAAAAGAAAGAATTCCATTACGAAGGTGGAATTAAAT CATACGTTGAGCATTTAAATCGCTCAAAACAACCGATTCATGAAGAGCCTGTGTACGTAGA AGGTTCAAAAAGATGGTATTCAGGTTGAGGTTTCTCTTCAATATAACGAAGGATACACAAAT AATATTTACTCATTTACGAATAAACCAATCCATACGTATGAAGGTGGTACACATGAGGTAGGT				
		TAAAACAGCTTTAACTCGTGTAATCAACGACTATGGTCGTAAAAATAGCATTTTAAAAGAT GCGGACAGTAATTTAACTGGTGAGGATGTTCGTGAAGGTTTAACAGCAATTGTATCAATCA				
		AGCATCCAAATCCACAATTTGAAGGACAAACGAAGACAAAACTTGGGAATAGTGAAGCG				
		AGAACAATTACAGAGTCTGTATTCTCAGAGGCATTTGAAAAGTTCTTACTAGAAAATCCTA				
		ATGTAGCGCGAAAAATTGTAGAAAAAGGTACGATGGCTGCACGTGCACGTGTAGCTGCGA				
		AAAAAGCGCGTGAATTGACACGTCGAAAGAGTGCGTTAGAAGTTTCAAGTTTACCTGGTA				
		AATTAGCTGATTGCTCTTCGAAAGATCCAGCAATTAGTGAAATTTACATCGTAGAGGGTGA				
		CTCTGCGGGTGGATCTGCAAAACAAGGACGCGATCGTCATTTCCAAGCAATTTTACCGCT				
		GAAAGGTAAAATTATTAATGTGGAAAAGGCGCGCTTAGATAAGATTTTATCAAATGATGAA				
		GTTCGTACAATTATTACGGCAATCGGTACAAATATTGGTGGAGACTCGATAT				
_	11.72.74.75.17.74	>ACGCACTATCACAGAGCTTGATGTGACGGTTCACCGTGACGGTAAAATTCACCGCCAAA	_			
3	枯草芽孢杆菌	CTTATAAACGCGGAGTTCCGGTTACAGACCTTGAAATCATTGGCGAAACGGATCATACAG	Bacillus subtilis subsp. subtilis strain UCMB5021 chromosome, complete genome	Bacillus subtilis subsp. subtilis	1995 1995 99%	0.0 99.82% 4060035 <u>CP05146</u>
		GAACGACGACACATTTTGTCCCGGACCCTGAAATTTTCTCAGAAACAACCGAGTATGATTA				
		TGATCTGCTTGCCAACCGCGTACGTGAATTAGCCTTTTTAACAAAGGGCGTAAACATCACG				
		ATTGAGGATAAACGTGAAGGACAAGAGCGCAAAAATGAATACCATTACGAAGGCGGAATT				
		AAAAGTTATGTAGAGTATTTAAACCGCTCTAAAGAGGTTGTCCATGAAGAGCCGATTTACA				
		TTGAAGGCGAAAAGGACGCCATTACGAAAGAACATTAAGACGCTACGAAAGAACAACGAAAGAAA				
		CAAGCAACATTTACTCGTTTACAAACAACATTAACACGTACGAAGGCGGTACCCATGAAG CTGGCTTCAAAACGGGCCTGACTCGTGTTATCAACGATTACGCCAGAAAAAAAGGGCTTA				
		TTAAAGAAAATGATCCAAACCTAAGCGGAGATGACGTAAGGGAAGGGCTGACAGCGATTA				
		TTTCAATCAAACACCCTGATCCGCAGTTTGAGGGCCAAACGAAAACAAAGCTGGGCAAC				
		TCAGAAGCACGGACGATCACCGATACGTTATTTTCTACGGCGATGGAAACATTTATGCTGG				
		AAAATCCAGATGCAGCCAAAAAAATTGTCGATAAAAGGCTTAATGGCGGCAAGAGCAAGA				
		ATGGCTGCGAAAAAAGCCCGTGAACTAACACGTCGTAAGAGTGCTTTGGAAATTTCAAAC				
		CTGCCCGGTAAGTTAGCGGACTGCTCTTCAAAAGATCCGAGCATCTCCGAGTTATATATCG				
		TAGAGGGTGACTCTGCCGGAGGATCTGCTAAACAAGGACGCGACAGACA				
		ATTTTGCCGCTTAGAGGTAAAATCCTAAACGTTGAAAAGGCCAGACTGGATAAAATCCTTT				
		CTAACAACGAAGTTCGCTCTATGATCACAGCGCTCGGCACAGGTATTGGGGAAGACTCAA				
		CCTG				
	1.1 X 11 1.1 - 11.	>ACGCCTTTCACCGAGCTGGATGTAACGGTTTACAGAGATGGAAAAATCCATTATCAGGAA				
4	地衣芽孢杆菌	TTTGAACGTGGCGTTCCGAAAGCTGATTTGAAAGTCATTGGAGATACGGAAGTGACGGGA	☑ Bacillus licheniformis strain P8_B2 chromosome, complete genome	Bacillus licheniformis	1991 1991 100%	0.0 99.63% 4343379 <u>CP045814.</u>
		ACGACCACACACTTCAAGCCTGATCCGGAAATATTCACGGAAACGACTGAATACGACTAT				
		GATACGCTCGCCACTCGTGTCCGCGAACTCGCTTTCTTGACAAAAGGCGTCAAAATCACG				
		ATCGAAGACAAGCGAAAGGAAAGAACGCAAGAATGAATACTGCTATGAAGGCGGTAT				
		TAAAAGCTATGTTGAACACTTGAACCGTTCGCGGGAAGTTATTCATGAAGAGCCGGTCTAT				
		ATTGAAGGATCCAAAGACGCATTACAAGAAGATCATACGTATCAAAGAAGGATCAAAGC				
		CAAGCAACATTTATTCATTTGCTAACAACATTCATACGTATGAAGGCGGAACCCATGAAGC CGGCTTTAAGACCGGTTTGACGAGGGTCATCAATGATTACGCGAGAAGAAACGGCGTATT				
		CAAAGAAAGCGATCCGAACTTAAGCGGAGAAGACGTCCGGGAAGGTTTGACAGCGATTA				
		TTTCAATCAAGCACCCGGATCCTCAATTTGAAGGGCAGACGAAAACAAAGCTCGGCAAC				
		TCAGAAGCGCTACGATAACAGATGCGCTATTTTCAGAAGCGCTTGAAAAGTTTCTGCTA				
		GAAAACCCGGATTCAGCGAAAAAATCGTTGAAAAAGGGGTTATGGCCGCCAGAGCACG				
		GATGGCTGCAAAGAAAGCACGCGAATTGACGCGCAGAAAAAGCGCCCTTGAAGTGTCCA				
		ATCTGCCGGGGAAACTTGCTGACTGTTCTTCTAAAGACCCGACGATTTCCGAACTTTACAT				
		CGTTGAGGGTGACTCTGCGGGCGGATCGGCAAAACAGGGCCGCGACCGTCATTTCCAAG				
		CAATTTTGCCTTTGAGAGGGAAAATTTTGAACGTCGAAAAAGCCCGCCTGGACAAAATAT				
		TGTCCAACAATGAGGTTCGTTCTATGATCACCGCCCTTGGCACCGGAATCGGGGAAGATT				
		CAACCTGAAA				
	E 1 4575 1745	>CCCATGGCGAAGGTGCTCAGCTGTTACGCACTTTCTACCTCTTTGGAAGTACACGTACAT	✓ Priestia aryabhattai strain XT37 chromosome, complete genome	Priestia aryabhattai	2013 2013 98%	0.0 99.37% 5022566 CP128552.
5	巨大芽孢杆菌	CGTGACGGTAAAGTTCATTATCAAAAATATGAACGAGGTGTACCGGCTGCTGACTTAAAA	Bacillus megaterium strain Q3_complete genome	Priestia megaterium Q3		0.0 99.37% 5052500 CP126585. 0.0 99.37% 5153539 CP010586.
		GTAGTTGGAGAAACAGATAAAACAGGTACTGTTATTCAATTCCATCCA	and the second s		2010 2010 3070	5.5 30.0170 0100000 <u>GF010000</u> .

		TTACAGAAACGCTTGAATACGATTTTGATACGTTAGCTAATCGTCTGCGTGAGTTAGCTTTC			
		TTAAACCGCGGCATTAAAATTACGATTGAAGACAAACGTGAAGAAGATAAAAGACGTGAA			
		TACCATTACGAAGGCGGAATTAAGTCTTACGTTGAACACTTAAACCGTTCGAAAGAAGTG			
		ATTCACGAAGAGCCGATCTATATTGAAGGTAATCGAGACAACATTTCTGTAGAAATTGCTA			
		TTCAATATAACGATAGCTACACAAGTAATTTATATTCTTTCGCAAACAACATTCACACATAT			
		GAAGGTGGAACGCACGAAGCAGGATTTAAAACAGCGTTAACGCGTGTAATTAACGACTAT			
		GCACGTAAAAACAGCGTATTTAAAGATAGTGACGCCAATTTAACGGGTGAAGATGTTCGT			
		GAAGGAATTACAGCTATTATCTCTATTAAGCACCCAGATCCGCAGTTTGAAGGACAAACAA			
		AAACAAAGCTGGGAAATAGTGAAGCAAGAACAATTACTGACTCTGTGTTTGCAGAACAC			
		TTAGAAACTTACTTGCTAGAGAACCCTATTGTGGCGAAAAAGGTAATTGAAAAAGGTTTA			
		ATGGCTGCAAGAGCAAGAATGGCAGCTAAAAAAGCTCGTGAGCTTACAAGACGTAAAAG			
		CGCGCTTGAAATTTCAAACTTACCGGGTAAATTAGCAGATTGTTCATCAAAAGATCCTTCT			
		ATTAGCGAACTCTATGTAGTAGAGGGTGACTCTGCCGGAGGTTCAGCTAAGCAGGGAAGA			
		AGCCGCCATTTCCAAGCTATTTTGCCTTTGCGCGGTAAAATTATCAACGTAGAAAAAGCGC			
		GTTTAGATAAAATTTTATCTAATAACGAAATTCGTACAATCATTACCGCTCTAGGAACGGGT			
		ATTGGTGACGATTTGATATCGAAAGGCCCGGCACCCCG			
_	1-1-457-1-45	>ATGCGTTATCTACGACCTTAGACGTGACCGTATACCGTGATGGAAAAATTCATTACCAGC	✓ Bacillus altitudinis strain UKM RB11 chromosome	Bacillus altitudinis	1999 1999 99% 0.0 99.91% 3767351 CP094654.1
6	短小芽孢杆菌	AATTCAAACGCGGCGTTCCAGTTGGAGATTTAGAGGTCATTGGTGAAACAGATGTAACAG	✓ Bacillus aerophilus strain KJ82 chromosome, complete genome	Bacillus aerophilus	1993 1993 99% 0.0 99.82% 3754440 CP091093.1
		GGACAACGACTCATTTTGTGCCAGATCCAGAAATTTTCACTGAAACCATTGAATTTGATTA	✓ Bacillus pumilus strain Y2 DNA gyrase B subunit (gyrB) gene_partial cds	Bacillus pumilus	1982 1982 99% 0.0 99.63% 1132 MF968899.1
		CGACACACTTGCTAACCGTGTACGTGAGTTAGCTTTCTTAACAAAAGGCGTCAACATCATC	Dacinus punnus strain 12 DNA gyrase D subunit (gyro) gene partial cus	Dacinos pormios	1302 1302 3376 0.0 33.0376 1132 MI 300033.1
		ATTGAAGACTTACGTGAAGGCAAAGAGCGAAGAAACGAATACTGCTATGAAGGCGGTATT			
		AAGAGCTATGTAGAACATTTGAATCGCTCGAAGGAAGTCGTTCATGAAGAACCAGTTTAC			
		ATCGAGGGTGAAAAAGACGGAATCACCGTTGAAGTTGCACTGCAATACAACGATTCCTAT			
		ACAAGCAATATTTATTCTTTCGCCAACAACATCAACACATATGAAGGCGGAACACACGAA			
		GCTGGCTTTAAAACCGGTCTGACGCGTGTCATCAATGATTATGCTCGTAAAAAATGGCGTAT			
		TCAAAGATGGAGACTCGAATTTGAGCGGTGAAGATGTACGAGAAGGCTTAACAGCCATTA			
		TCTCTATCAAACATCCAGACCCTCAATTCGAAGGACAAACGAAGACAAAGCTCGGTAACT			
		CAGAAGCAAGAACCATTACCGACTCCCTCTTCTCCGAAGCACTTGAGAAATTCCTCTTAG			
		AGAACCCTGATGCTGCAAAGAAAATTGTGGAGAAAAGGTGTGATGGCAGCTCGTGCAAGA			
		ATGGCTGCCAAAAAGGCACGTGAGCTGACAAGACGTAAAAGTGCACTGGAAGTCTCTAG			
		CTTGCCTGGGAAACTGGCAGACTGTTCTTCTAAAGATCCTTCCATCTCTGAGCTTTATATC			
		GTAGAGGGAGATTCTGCGGGCGGATCTGCTAAGCAAGGTCGTGATCGACATTTCCAAGCG			
		ATCTTACCGTTAAGAGGGAAGATCCTAAACGTTGAAAAAGCACGACTAGATAAAATTTTAT			
		CTAACAACGAGGTTCGTTCAATGATTACAGCGCTAGGGACTGGAATCGGAGAAGACTCAC			
		TTA			
-					
	\k\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	>CGGGGGATACTCGACGTCGAGATGTCGATTCATGGCCGACCCCGGGCCAATCGCATAAAT			
'/	凝结芽孢杆菌	AATGGTATTGATTTCTTCATTTGTAAAAATATCCGCCAGCTTTGCTTTTTCCGTATTGATGAC	✓ Weizmannia coagulans strain DSM 2314 chromosome, complete genome	Heyndrickxia coagulans	747 1149 97% 0.0 83.81% 3628651 CP033687.1
		TTTTCTCTTAGCGGCAGATAGCCTGGAATTTCCGGTCGCCCCCTGTTGGCAGAACCGCCC	✓ Weizmannia coagulans strain IDCC1201 chromosome_complete genome	Heyndrickxia coagulans	747 1149 97% 0.0 83.81% 3664215 <u>CP035305.1</u>
		GCGGAATCCCCTTCAACGAGATACAGCTCGCTCCCCTGCGGATTGCGGCTTTGCGCCGGC			
		GCAAGCTTTCCGGACAAGCTCGTTTACTATATCGTCCTCTTTTTTGCCAGTTCTCTCTC			
		CCGTGCCTTCCTCGCTGCCCGGGCCTGCGACGCCCCGTTGGCTTTCCGGATTAAAAG			
		ATTGCTCGGATCCGGGTTTTCTTCTTAAAATAAGAAAGGTGTTCCGAAACAATCGTATCAA			
		CTGCTGATTGGGCTTCACTTGTGCCAAGTTTCCCTTGTCGTTTGTCCTTCAAAATGCAGCA			
		GTTCGACGGGAATGCGGACGAGATGACGGCCGAGACCCCTTCGCGGATATCCGTGCCTT			
		CTATTTCTTTAACTTTATCGTTTATCCGGCCGGATTCTCTTGTGACATCCGTCACGACCCGC			
		GTCAATGCCGACTCTGGCCCGGCTTCTTGCGTGCCGTGAACATTCTTGCGCACGTAGTTCA			
		CATAGCAGGCAATGCCTTCCGAAAATCGAAGGGATACCTGAAACGTTATGCCGCTTCGATT			
		CCGTTCTGTTTAAATCTCGATAAACACAGACGGATGGAGCACAGCGGTTCATTGCTCCAC			
		GTACTGAACAGATGCCTCCATGCCAATGTTATACTGGTACGCGCCGAGCTTCCTCACACTT			
		TGTCATCCATGGTGATTTTGATCCCTTTATTAAAAGGCAAGTTCACGGAGCCGGGTTGTAA			
		GAATATCAAGTCGAACTCGGTCGTTTCCGTAAAAATTTCCCGGATCCGCCTGAAGTGAGT			
		CGTTGTGCCCGTACGATCCGTTTCGCCATGATTTTTAGTCAAGCAGGTTTGCCGCGCGTAA			
		TTTTGGTAGTAATATGCCCGTCGCGGTGGACATAGACATCGAGCTCTGTAGACGGCAATCC			
		AACAGACGCCACCATCCCGTGCAGACGCCCCGAAACATTATATCCAGACAA			
		AACAGACGCCACCATCCCGTGCAGACGCCCCGAAACATTATATCCAGACAA			

4.3.3 16S rRNA 进行凝结芽胞杆菌鉴定的可行性分析

通过BLAST将不同芽孢杆菌的16S rRNA序列与NCBI数据库中的已知序列进行比对,发现序列相似性均在99.5%以上(表23),16S rRNA对于常见的几株芽孢杆菌的鉴定与区分是有效的,无需用gyrB基因序列做比对鉴定。使用CLUSTALX、BIOEDIT和TREECON软件对凝结芽胞杆菌16S rRNA序列和其他芽孢杆菌的16S rRNA序列进行比对,绘制系统发育树如图20所示。凝结芽孢杆菌的16S rRNA序列与常见的芽孢杆菌如枯草芽孢杆菌、地衣芽孢杆菌等处于不同分支,且亲缘关系较远。同时,2023年将凝结芽孢杆菌重新分类为海恩德里克斯氏菌属Heyndrickxia,也说明了凝结芽孢杆菌与其它芽孢杆菌基因序列差异较大。

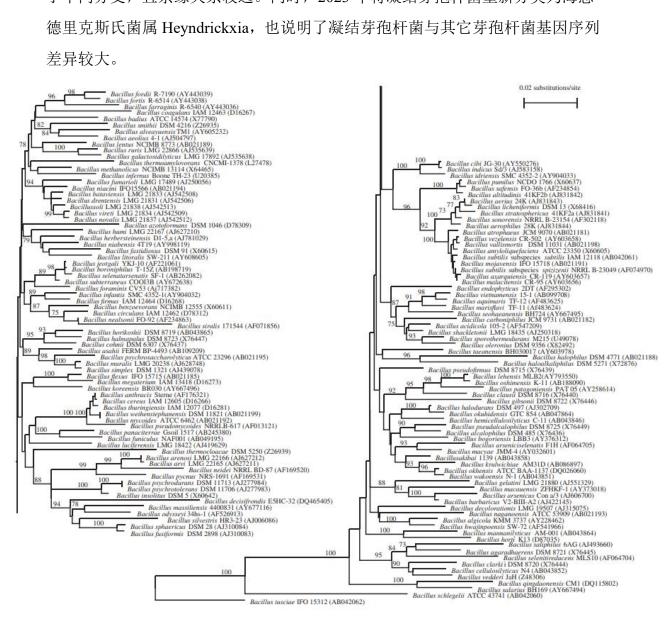
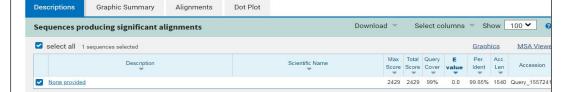


图 20: 基于 16S rRNA 基因序列的芽孢杆菌无根邻接系统发育树

注:分支点的 bootstrap 数值显示高于 70%。数据来源于《伯杰氏系统细菌学手册》(Bergev's Manual of Systematics of Archaea and Bacteria (2015)) 。

4.3.4 16S rRNA 进行凝结芽胞杆菌分子鉴定的验证结果

将我们现有的凝结芽孢杆菌菌株,包括实验室保存菌株以及饲料添加剂生产 企业的菌株进行 16S rRNA 测序,与凝结芽胞杆菌模式菌株 ATCC 7050 进行比 对结果如表 25 所示。结果表明,利用 16S rRNA 序列测序比对的方法进行凝结 芽孢杆菌的分子鉴定,结果准确可靠。


表 25 不同凝结芽孢杆菌 16S rRNA 序列及比对结果 菌株名称 不同凝结芽孢杆菌 16S rRNA 序列及与模式菌株 ATCC 7050 (Gene ID:29814753) 比对结果 凝结芽孢杆菌 Heyndrickxia GGCGGACGGGTGAGTAACACGTGGGCAACCTGCCTGTAAGACTGGGATAACGCCGGGAAACCGGGGCTAATACCGGATAGTTTTTTCCTCCGCA (Bacillus) coagulans GATGCGTAGCCGACCTGAGAGGGTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCA **CGMCC** ATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGGAAGAACAAGTGCCGTTCGA 1.10823 A CAGGGCGGCCCTTGACGGTACCCGGCCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGCTTCTTAAGTCTGATGTGAAATCTTGCGGCTCAACCGCAAGCGGTCATTGGAAACTGGGAGGCTT GAGTGCAGAAGAGAGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTG TAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGG TTTCCGCCCTTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGGCCCG CTTCGGGGGACAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGACC TTAGTTGCCAGCATTGAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAATCATCATCATCCCCCTTATGA CCTGGGCTACACGTGCTACAATGGATGGTACAAAGGGCTGCGAGACCGCGAGGTTAAGCCAATCCCAGAAAACCATTCCCAGTTCGGATTGCAAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTT Select columns ✓ Show 100 ❤ Download Y Sequences producing significant alignments select all 1 sequences selected Graphics Accession 2846 2846 100% 0.0 99.81% 1549 Query 1564963 None provided 凝结芽孢杆菌 CCACTTACAGATGGGCCCGCGCGCATTAGCTAGTTGGCGGGGTAACGGCCCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGG

H.coagulans CGMCC 1.0007 CCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGC GTGAGTGAAGAAGGCCTTCGGGTCGTAAAACTCTGTTGCCGGGGAAGAACAAGTGCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCGGCCA TGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCCTGGGGG AGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGCAGCTAACGCATT AAGCACTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGA AGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACCTCCCTGGAGACAGGGCCTTCCCCTTCGGGGGACAGAGTGACAGGTGGTGCAT GGTTGTCGTCAGCTCGTGTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGACCTTAGTTGCCAGCATTGAGTTGGGCACTCTAA

GGACAGATGATTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTT

凝结芽孢杆菌 H.coagulans CGMCC 1.2009

凝结芽孢杆菌 H.coagulans CGMCC 1.2407

4.4 市场样品菌种鉴别

挑选了部分样品按照菌体形态、菌落形态、生理生化指标、16s rRNA 进行鉴定,所得结果均符合要求。

试验项目	产品 4	产品 6	产品 12	产品 13	产品 17	产品 18
菌体形态	与描述相符	与描述相符	与描述相符	与描述相符	与描述相符	与描述相符
菌落形态	与描述相符	与描述相符	与描述相符	与描述相符	与描述相符	与描述相符
厌氧生长	+	+	+	+	+	+
接触酶	+	+	+	+	+	+
V-P 测定	+	+	+	+	+	+
D-葡萄糖产酸	+	+	+	+	+	+
L-阿拉伯糖产酸	+	+	+	+	+	+
水解明胶	-	-	-	-	-	-
水解酪蛋白	-	-	-	-	-	-
利用柠檬酸盐	-	-	-	-	-	-
利用丙酸盐	-	-	-	-	-	-
卵黄反应	-	-	-	-	-	-
硝酸盐还原	-	-	-	-	-	-
生长 NaCl: 7%	-	-	-	-	-	-
生长温度: 55℃	+	+	+	+	+	+
16S rRNA	与描述相符	与描述相符	与描述相符	与描述相符	与描述相符	与描述相符

表 26: 菌株鉴定

5 活菌数测定方法

国内外具有代表性的凝结芽孢杆菌检测方法汇总如下表 27,不同方法的主要差异在培养基、稀释液、培养温度、培养时间等方面。

表 27: 凝结芽孢杆菌活菌数方法汇总

编号	标准	培养基	稀释溶液	温度及时间	计数方法	
1	饲用微生物制剂中凝结芽孢杆菌	改良营	0.85%生理盐水	50℃ 24 h 好氧	平板法	
	的检测(DB 21/T 3278-2020)	养琼脂	0.00 / 0.11 / 1.111 / 1.1	200 2.1174 +1	1 2012	
2	饲料添加剂 凝结芽孢杆菌	改良营	0.85%生理盐水	50℃ 24 h 好氧	平板法	
	(T/CSWSL 022-2020)	养琼脂	0.8570王珪血八	30 0 24 11 9,1 =(1 11114	
3	饲料添加剂 凝结芽孢杆菌的测	改良	0.85%生理盐水、0.1%	40℃ 48 h 好氧	平板法	
,	定(T/YNBX 024-2021)	MRS	吐温-80	40 0 46 11 好事(1 111144	
4	动物饲料-芽胞杆菌的分离和计	TSA	0.2%NaOH, 0.1% 吐	37℃ 16-24 h	亚托汁	
4	数方法(EN 15784: 2021)	15A	温-80	好氧	平板法 	
5	动物饲料-乳杆菌的分离和计数	MRS	PBS+0.1%吐温-80	37 ℃ 48-72 h	亚托汁	
)	方法(EN 15787: 2020)	MIKS	PBS+0.170吐.価-80	厌氧	平板法 	
(欧盟凝结芽孢杆菌 DSM 32016	MDC	改良 EN 15787, 稀释	加热处理,37℃	亚杉汁	
6	检测方法的评估报告	MRS	液中加入 1% 吐温-80	72 h 厌氧	平板法	
7	其他企标	MRS	0.85%生理盐水	45℃ 48 h 好氧	平板法	
/	八 他正你	pH 5.5	0.6370土垤鱼小	43 0 48 11 好羊	以法	

5.1 培养条件的选择

参考上表中凝结芽孢杆菌的几种检测方法,配制下表 28 中的几种培养基。 并按照方法中的不同培养条件进行比较,结果见下表 29。生长快慢方面,培养基 3 生长缓慢,容易染菌,可排除。培养基 1 和 5 也相对生长缓慢,培养基 1 在 45℃培养 24h 菌落小于培养基 2 和 4;培养基 5 在 45℃下培养 24h 生长极慢,需培养至 48h。在菌数方面,培养基 4 所得菌数最高,其次是培养基 2,进一步比较培养基 2 和 4。

见表 30,在不同的培养时间及培养温度下,培养基 2 比培养基 4 所测得菌数的变异系数更小,不同样品的菌落直径在培养基 2 上更大,说明生长更好。温度低于 45℃时,生长均较缓慢。综合以上,选择 2 号培养基,培养温度及时间为 45℃48h 或者 50℃24h。

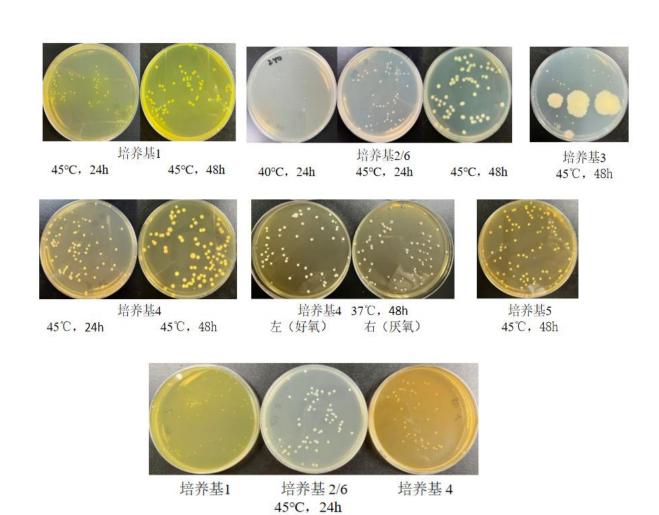
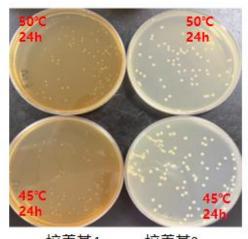
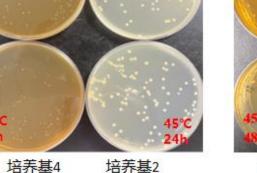
表 28: 培养基成分比较

成分	①DB 21/T 3278-2020; T/CSWSL 022-2020 改良营养琼脂	②T/YNBX 024-2021 改良 MRS	③EN 15784: 2021 胰蛋白 胨大豆琼脂 TSA	④EN 15787: 2020 MRS 培养基	⑤MRS培 养基-企 标	⑥MRS 加富培养 基
大豆蛋白胨	5 g	/	5 g	/	/	/
蛋白胨	/	10 g	15 g	10 g	10 g	10 g
酵母膏	2 g	5 g	/	4 g	5 g	5 g
葡萄糖	5 g	5 g	/	20 g	20 g	5 g
牛肉膏	/	5 g	/	8 g	10 g	5 g
无水氯化钙	/	0.15 g	/	/	/	0.15 g
一水硫酸锰	/	0.1 g	/	/	/	0.1 g
氯化钠	/	2.5 g	5 g	/	/	2.5 g
L-半胱氨酸盐酸盐	0.25 g	0.5 g	/	/	/	0.5 g
三水醋酸钠	/	/	/	5 g	5 g	/
磷酸氢二钾	1 g	/	/	2 g	2 g	/
柠檬酸三铵	/	/	/	2 g	2 g	/
吐温 80	/	/	/	1 mL	1 mL	/
七水硫酸镁	0.1 g	/	/	0.2 g	0.1 g	/
四水硫酸锰	0.025 g	/	/	0.05 g	0.05 g	/
乙酸钠	2.5 g	/	/	/	/	/
溴甲酚紫	0.032 g	/	/	/	/	/
蒸馏水	1000 mL	1000 mL	1000 mL	1000 mL	1000 mL	1000 mL
琼脂粉	20 g	20 g	20 g	20 g	20 g	20 g
pН	5.5	5.2	7.3	6.2	5.5	5.5
培养条件	50°C 24 h	40°C 48 h	37°C 16-24 h	37℃ 48-72 h 厌氧培养	45°C 48 h	45°C48 h

表 29: 培养条件比较

培养基	培养温度	活菌数(×10 ⁸ CFU/g)		情况说明	
47年	垣介価 /文	24h	48h		
	37°C	未长	645.4±83		
1	45°C	782.3±54	809.9±35	培养基1可考虑	
	50°C	813.8±25	24h 已长好		
2/6	45°C	758.6±36	857.1±43	· 培养基 2 可考虑	
2/0	40°C	593.1±41	677.8±26	「一切不好」 	
3	45°C	未长	300(染菌)	生长缓慢,排除。	
3	37°C	未长	未长	工、场、逻、分析。	

	45°C	1032.0±81	1004.9±71	
4	37℃ (好氧)	太小	624.0±56	培养基4可考虑
	37℃ (厌氧)	太小	857.1±43	
5	45°C	未长	733.0±54	培养基 5 可考虑,但在 45℃下培养时间较长,需达到 48 h

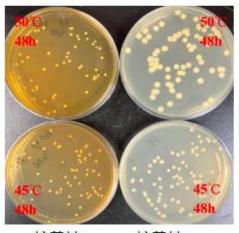

图 21: 不同培养基比较

表 30: 培养基 2 和培养基 4 的比较

样		培养	基 2(×	108 CFU/	g)			培	养基 4(×	108 CFU/	(g)	
品	45°C24h	45°C48h	50°C	50°C	平均值±	DCD	45°C24h	45°C48h	50°C/	50°C/	平均值±标	DCD
ПП	43 C2411	43 (4811	24h	48h	标准差	RSD	43 C2411	43 C4611	24h	48h	准差	RSD
A	772±31	816±54	/	/	/	/	849±175	900±185	/	/	/	/
В	976±212	977±157	/	/	/	/	655±34	665±38	/	/	/	/
С	108.6	109.0	112.4	112.4	110.6±2.1	1.89%	110.8	111.9	108.4	101.3	108.1±4.8	4.41%
D	91.5	91.7	87.6	87.6	89.6±2.3	2.58%	69.7	72.6	63.7	78.4	71.1±6.1	8.60%
Е	116	116.7	112.9	112.9	114.6±2.0	1.76%	127.4	128.9	99.1	100.5	114.0±16.4	14.38%
F	117.1	118.8	122.8	122.8	120.4±2.9	2.40%	112.3	124.3	108.9	111.3	114.2±6.9	6.03%

培养基4 培养基2

图 22: 相同样品在不同培养条件下外观

5.2 耗氧需求的选择

选取三个不同的样品于 50℃分别在好氧和厌氧的条件下培养 24h,实验结果 见下表。在好氧及厌氧环境下菌数的差异不大,但厌氧环境下的菌落比好氧环境 下的小,考虑到好氧设备更加普遍,故选择了好氧条件进行培养。

1 六 口	活菌数(×	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		
样品	好氧	厌氧	相对偏差	
A	115.5	116.0	0.21%	
В	95.0	103.5	4.27%	
С	95.3	95.3	0.00%	

表 31: 好氧厌氧比较

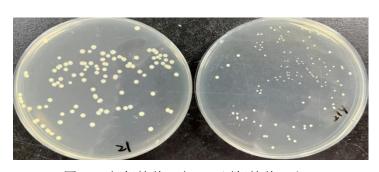


图 23: 好氧培养(左); 厌氧培养(右)

5.3 称样量

一般饲料中有害微生物的检测称样量多为 25 g, 但是益生菌含量都非常高, 称样量过高不利于操作。对比不同称样量间的差别,实验结果见表 32,对于 1.0 $\times 10^{10}\, {\rm CFU/g}$ 的产品差异较小,相对偏差均在 10%以内。综合考虑,将称样量设定为 $5{\rm g}$ 。

表 32: 称样量比较

样品	称样量	活菌数(×10 ⁸ CFU/g)	相对偏差	
A	1 g 样品+99 mL 生理盐水	115.5	1.750/	
A	25 g 样品+225 mL 生理盐水	119.7	1.75%	
D	1 g 样品+99 mL 生理盐水	96.3	2.75%	
В	25 g 样品+225 mL 生理盐水	91.1	2.73%	
C	1 g 样品+99 mL 生理盐水	94.6	7.05%	
	25 g 样品+225 mL 生理盐水	109.0	7.03%	

5.4 稀释溶液的选择

采用以下 5 种稀释液进行比较,实验结果见表 34 和表 35。除稀释液 3 外,另 4 种稀释液对于 100 亿产品检测值差异不大,但添加有吐温的稀释液,对高菌数产品活菌数有显著提升,故选择 0.85%生理盐水+0.1%吐温 80 作为稀释液。

表 33: 稀释液成分

编号	稀释溶液	标准
		饲用微生物制剂中凝结芽孢杆菌的检测(DB 21/T 3278-2020)
1	0.85%生理盐水	饲料添加剂 凝结芽孢杆菌 (T/CSWSL 022-2020)
		企标
2	0.85%生理盐水+0.1%吐温80	饲料添加剂 凝结芽孢杆菌的测定(T/YNBX 024-2021)
3	0.2%NaOH+0.1%吐温 80	动物饲料-芽胞杆菌的分离和计数方法(EN 15784: 2021)
4	PBS+0.1%吐温 80, pH7.3	动物饲料-乳杆菌的分离和计数方法(EN 15787: 2020)
5	PBS+1%吐温 80,pH7.3	欧盟凝结芽孢杆菌 DSM 32016 检测方法的评估报告

表 34: 稀释液比较

编号	稀释溶液	活菌数(×10	相对偏差	
州与	7年1117	实验一	实验二	但机顶层
1	0.85%生理盐水	140.5	148.3	2. 70%
2	0.85%生理盐水+0.1%吐温 80	125. 7	139.1	5. 06%
3	0.2%NaOH+0.1%吐温 80	4. 4	/	/
4	PBS+0.1%吐温 80,pH7.3	137. 3	140.8	1. 26%
5	PBS+1%吐温 80,pH7.3	134.8	132.0	1.05%

表 35: 高菌数产品稀释液比较

培养 基	稀释液	样品 1 (×10 ⁸ CFU/g)	提升率	样品 2 (×10 ⁸ CFU/g)	提升率	
1	0.85%生理盐水	769.5	21.40%	579.5	50.200/	
1	0.85%生理盐水+0.1%吐温 80	934.2	21.40%	917.8	58.38%	
2/6	0.85%生理盐水	797.4	14.03%	939.8	29.500/	
2/0	0.85%生理盐水+0.1%吐温 80	909.3	14.0370	1207.6	28.50%	
4	0.85%生理盐水	753.0	22.750/	686.0	28.15%	
4	0.85%生理盐水+0.1%吐温 80	999.6	32.75%	879.1		

6 芽孢数测定方法

目前芽孢杆菌相关标准中规定的芽孢计数方法基本均采用 80°C水浴处理 10 min,例如 GB/T 26428-2010《饲用微生物制剂中枯草芽孢杆菌的检测》,轻工标准 QB/T 5924-2023《凝结魏茨曼氏菌计数方法》及团标 TCSWSL 022-2020《饲料添加剂 凝结芽孢杆菌》中处理条件均为 80°C恒温水浴锅中处理 10 min。有95%以上的企标中使用芽孢进行计数,企标中规定的芽孢处理方法也基本为80°C水浴处理 10 min。故本文件未对芽孢检测方法进行其他条件的摸索,采用了80°C水浴处理 10 min 作为芽孢处理条件。

经综合考虑,将 80 ℃水浴处理 10 min 纳入活菌数测定步骤中,以活菌数为测定指标。

7 活菌数数值的确定

未经高温处理的活菌数测定范围为 4.6×10^8 CFU/g \sim 1.2×10¹¹ CFU/g,95%以上符合标识,87.5%超过 5.0×10^9 CFU/g。经高温处理的活菌数实测范围为 3.8×10^8 CFU/g \sim 1.1×10¹¹ CFU/g,81.25%超过 5.0×10^9 CFU/g。

企标中规定活菌数范围为 $1.0\times10^7\sim1.0\times10^{11}$ CFU/g。

另外,饲料中有效活菌数一般在 10⁶ CFU/g 才能更好的发挥作用,凝结芽孢杆菌的添加量 0.01%~0.05%,从这个角度饲料添加剂活菌数不宜太低。

综合考虑,本文件规定凝结芽孢杆菌活菌数≥1.0×109 CFU/g。

表 36: 市场样品活菌数和芽孢率实测值

序号	标识值	活菌数 ¹ (×10 ⁸ CFU/g)	活菌数 ² (×10 ⁸ CFU/g)
----	-----	--	--

固体粉末,100×10 ⁸ CFU/g	104.2	91.1
固体粉末,1000×10 ⁸ CFU/g	1202.6	1076.9
固体粉末,100×10 ⁸ CFU/g	4.6	3.8
固体粉末	98.1	88.8
固体粉末	87.9	75.5
固体粉末,10×10 ⁸ CFU/g	59.4	46.2
固体粉末,100×10 ⁸ CFU/g	232.4	194.7
固体粉末,≥50×10 ⁸ CFU/g	67.5	62.5
固体粉末,≥100×10 ⁸ CFU/g	103.4	100.8
固体粉末,100×10 ⁸ CFU/g	85.0	78.0
固体粉末,10×10 ⁸ CFU/g	17.7	19.4
固体粉末,100×10 ⁸ CFU/g	114.4	64.3
固体粉末,200×10 ⁸ CFU/g	236.6	112.6
固体粉末,100×10 ⁸ CFU/g	106.6	87.7
固体粉末,500×10 ⁸ CFU/g	691.7	599.3
固体粉末,500×10 ⁸ CFU/g	663.7	638.8
	固体粉末,1000×10 ⁸ CFU/g 固体粉末,100×10 ⁸ CFU/g 固体粉末 固体粉末 固体粉末,10×10 ⁸ CFU/g 固体粉末,100×10 ⁸ CFU/g 固体粉末,250×10 ⁸ CFU/g 固体粉末,≥100×10 ⁸ CFU/g 固体粉末,100×10 ⁸ CFU/g 固体粉末,200×10 ⁸ CFU/g 固体粉末,500×10 ⁸ CFU/g	固体粉末, 100×10 ⁸ CFU/g 1202.6 固体粉末, 100×10 ⁸ CFU/g 4.6 固体粉末 98.1 固体粉末 87.9 固体粉末, 10×10 ⁸ CFU/g 59.4 固体粉末, 100×10 ⁸ CFU/g 232.4 固体粉末, ≥50×10 ⁸ CFU/g 67.5 固体粉末, ≥100×10 ⁸ CFU/g 103.4 固体粉末, 100×10 ⁸ CFU/g 17.7 固体粉末, 100×10 ⁸ CFU/g 17.7 固体粉末, 100×10 ⁸ CFU/g 17.7 固体粉末, 100×10 ⁸ CFU/g 114.4 固体粉末, 200×10 ⁸ CFU/g 116.6 固体粉末, 500×10 ⁸ CFU/g 106.6

注: 1 为未经高温处理的活菌数, 2 为经高温处理的活菌数。

8 杂菌率

在不同的培养方法下,可生长的杂菌不同,因此杂菌率与方法息息相关,目前常用的方法大概两类。一类是测定产品中细菌总数和霉菌总数,记为杂菌,但较多微生物饲料添加剂可在细菌总数和霉菌总数计数条件中生长,因此,该方法也存在严重的问题。一类是在产品本身培养条件下,生长的其他微生物为杂菌,这种方式培养条件决定了杂菌率。

8.1 杂菌(细菌总数)

取凝结芽孢杆菌样品测定细菌总数,见下图,10⁻¹次平板长满菌落,从10⁻¹到10⁻¹⁰菌落数呈现梯度关系。刮取10⁻¹平板表面菌体镜检均为芽孢,取不同梯度平板中菌落,或为杆状,或为芽孢体,说明凝结芽孢杆菌可在此条件下生长,因此通过测定细菌总数作为杂菌不可行。

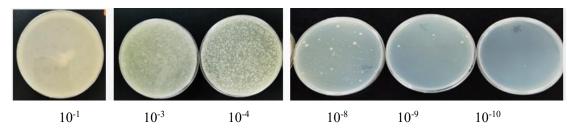


图 24: 细菌总数平板

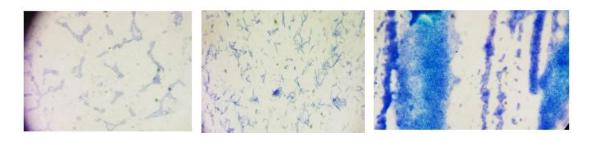


图 25: 菌体镜检

注: 依次为10-1 平板表层菌体-芽孢,10-8 平板里层菌体-杆菌,10-8 平板表层菌体-芽孢

8.2 杂菌 (凝结芽孢杆菌培养条件)

考虑杂菌率与方法有关, 故通过复配进行验证该方法对杂菌率的影响。

8.2.1 样品及配方

样品: 枯草芽孢杆菌(2.0×10^{11} CFU/g)、地衣芽孢杆菌(1.0×10^{11} CFU/g)、 凝结芽孢杆菌(2.0×10^{10} CFU/g)

复合产品配方: 因非芽孢类产品可通过 80°C10 min 水浴处理排出,因此只选择了枯草地衣进行复配。按照质量比进行复配(表 37),得到不同数量级含量的凝结芽孢杆菌。

样品	凝结芽孢杆菌(g)	地衣芽孢杆菌 (g)	枯草芽孢杆菌(g)
复合产品1	1	0.1	0.1
复合产品 2	0.33	0.33	0.33
复合产品3	0.05	0.5	0.5

表 37: 复合产品配比

8.2.2 试验结果

由编号 1—6 的实验结果可知,地衣芽孢杆菌和枯草芽孢杆菌在 MRS pH5.5 的平板上于 37° 、 45° 、 55° C培养 24h 和 48h 均未生长; 地衣芽孢杆菌在 MRS 加

富 pH5.5 的平板上于 55℃培养 24h 和 48h 未生长,枯草芽孢杆菌在此条件下长势较差。而凝结芽孢杆菌在 MRS pH5.5,45℃及 MRS 加富 pH5.5,55℃两个条件下的长势均较好,故将这两种条件作为复合产品中凝结芽孢杆菌检测的培养条件。

由编号 7—12 的实验结果可知,复合产品在 MRS pH5.5,45℃下培养 48 h, 无论凝结芽孢杆菌的质量所占复合产品中的比例是多或者少,此培养条件下只有 凝结芽孢杆菌的菌落,且实际测得的芽孢数与单菌芽孢数差别不大。复合产品在 改良 MRS 的条件下,当凝结芽孢杆菌的质量所占复合产品中的比例为 1/3 及以 上时,此培养条件下只有凝结芽孢杆菌的菌落,且实际测得的芽孢数与单菌芽孢 数差别不大;但当凝结芽孢杆菌的质量所占复合产品的百分比为 4.76%时,平板 中有两种形态的菌,如图 26。

故复合产品中凝结芽孢杆菌检测的最佳培养条件为培养基 MRS pH5.5,45℃ 培养 48h,此条件检测不出其他菌。而单菌产品采用改良 MRS 培养基可检出杂菌。也更加明确了采用的培养方法显著的影响着杂菌的检出。

基于没有严谨科学,且方便操作的检测方法,故不对杂菌及相关内容进行规定。

表 38: 枯草芽孢杆菌、地衣芽孢杆菌、凝结芽孢杆菌在不同培养条件下的芽孢数

样品	编	培养	NA (×10 ⁸ CFU	J/g)	MRSpI	H5.5 (×10)8CFU/g)	改良M	RS(×10	⁸ CFU/g)	YPD	(×10 ⁸ CF	U/g)
作印	号	时间	37°C	45°C	55°C	37°C	45°C	55°C	37°C	45°C	55°C	37°C	45°C	55°C
地衣	1	24h	870	870	770	未长	未长	未长	670	620	未长	1020	830	660
単菌	2	48h	870	870	770	未长	未长	未长	670	620	未长	1020	830	660
枯草	3	24h	2170	2370	230	未长	未长	未长	2560	2310	100	2020	1980	60
单菌	4	48h	2170	2370	230	未长	未长	未长	2560	2310	100	2020	1980	60
凝结	5	24h	/	6	119	未长	太小	未长	5	227	179	未长	205	175
单菌	6	48h	0.23	110	215	未长	205	未长	84	227	179	168	205	175
复合	7	24h	/	/	/	/	太小	/	/	/	192	/	/	/
产品1	8	48h	/	/	/	/	196	/	/	/	192	/	/	/
复合	9	24h	/	/	/	/	太小	/	/	/	207	/	/	/
产品2	10	48h	/	/	/	/	228	/	/	/	207	/	/	/

复合	11	24h	/	/	/	/	太小	/	/	/	有两种	/	/	/
产品3	12	48h	/	/	/	/	208	/	/	/	菌存在	/	/	/

注: (1) 枯草芽孢杆菌和地衣芽孢杆菌分别稀释至 10⁻⁷、10⁻⁸、10⁻⁹,涂布至 MRS 平板中,于 45℃培养 24h 和 48h,均无菌落生长 (2) "/"表示未做此组实验

图 26: 复合产品 3 在改良 MRS 平板上生长情况

9 外观与性状

收集到的样品均为粉末状,颜色有白色、浅棕色、浅黄色或褐色,见下表 39 中实拍图。但考虑微生态产品颜色主要由载体颜色决定,不宜固定具体颜色。 另外,产品带有一定的发酵气味。故对固态产品外观与性状描述为:色泽均匀一致,无结块,无霉变,有特殊发酵气味,无异臭味。

表 39: 凝结芽孢杆菌产品质量指标

序号	水分	外观	粒度 (0.85 mm)	外观实拍图
1	11.10%	白色固体粉末	100%通过	
2	7.80%	浅棕色固体粉末	100%通过	
3	6.3%	浅棕色固体粉末	100%通过	

4	7.00%	浅棕色固体粉末	100%通过	
5	6.40%	浅棕色固体粉末	100%通过	
6	7.40%	浅棕色固体粉末	100%通过	
7	6.80%	棕色固体粉末	100%通过	
8	4.21%	白色固体粉末	100%通过	
9	6.60%	白色固体粉末	100%通过	
10	3.52%	灰色固体粉末	100%通过	
11	4.32%	白色固体粉末	100%通过	
12	4.45%	白色固体粉末	100%通过	

13	2.30%	浅黄色固体粉末	100%通过	
14	3.31%	浅棕色固体粉末	100%通过	13
15	6.70%	浅黄色固体粉末	100%通过	
16	9.70%	棕色固体粉末	100%通过	
17	2.62%	棕色固体粉末	100%通过	
18	2.0%	浅棕色固体粉末	100%通过	100 100 JUNE

10 水分

采用 GB/T 6435-2014 《饲料中水分的测定》测定 18 个样品水分,1 个样品水分超过 10%,17 个样品水分(占比 94.44%)<10% (表 39)。企标中有约 24.32%规定水分 \leq 12%,5.4%规定 \leq 9%,70.27%规定 \leq 10%。综合考虑规定水分 \leq 10%。

11 粒度

采用 GB/T 5917.1-2008《 饲料粉碎粒度测定 两层筛筛分法》对样品进行筛分,样品均为粉末状,均 100%通过 0.85 mm 孔径试验筛(表 39)。将粒度规定如下:产品 90%以上通过孔径为 0.85 mm 的试验筛。

12 总砷的测定

采用 GB/T 13079《饲料中总砷的测定》测定总砷 (以 As 计) 含量,结果见表 40。结果表明,最大值为 1.31 mg/kg,最小值为 0.05 mg/kg,平均值为 0.52 mg/kg。

GB 13078-2017《饲料卫生标准》中规定"其他矿物质饲料原料≤10.0 mg/kg", NY/T 1444-2007《微生物饲料添加剂技术通则》中规定总砷≤2.0 mg/kg,NY/T 4347-2023《饲料添加剂 丁酸梭菌》中规定总砷≤2.0 mg/kg,GB 7300.501-2021《饲料添加剂 第 5 部分: 微生物 酿酒酵母》、GB 7300.502-2023《饲料添加剂 第 5 部分: 微生物 植物乳杆菌》、GB 7300.503-2023《饲料添加剂 第 5 部分: 微生物 屎肠球菌》、GB 7300.504-2023《饲料添加剂 第 5 部分: 微生物 嗜酸乳杆菌》四项已发布强标中均规定总砷≤2.0 mg/kg。综合考虑,本文件将总砷(以 As 计)含量定为≤2 mg/kg。

表 40: 总砷

样品	As (mg/kg)	样品	As (mg/kg)
1	0.36	12	0.12
2	1.31	13	0.12
3	0.78	14	0.23
4	0.17	15	0.05
5	0.36	16	0.25
6	0.24	17	0.54
7	0.84	18	0.68
8	0.26	最大值	1.31
9	0.99	最小值	0.05
10	1.04	平均值	0.52
11	0.95		_

13 铅的测定

采用 GB/T 13080《饲料中铅的测定 原子吸收光谱法》测定铅含量,结果见表 41。结果表明,所测样品中铅含量最大值为 4.146 mg/kg,最小值为 0.086 mg/kg,平均值为 0.607 mg/kg。参考 GB 13078-2017《饲料卫生标准》中规定"矿物质饲料原料≤15.0 mg/kg",NY/T 1444-2007《微生物饲料添加剂技术通则》中规定铅≤5.0 mg/kg,GB 7300.501-2021《饲料添加剂 第 5 部分:微生物 酿酒酵母》中规定铅≤1.5 mg/kg、GB 7300.502-2023《饲料添加剂 第 5 部分:微生物 植物乳杆菌》、GB 7300.503-2023《饲料添加剂 第 5 部分:微生物 屎肠球菌》、GB 7300.504-2023《饲料添加剂 第 5 部分:微生物 屠肠球菌》、GB 7300.504-2023《饲料添加剂 第 5 部分:微生物 屠肠球菌》、GB 7300.504-2023

4347-2023《饲料添加剂 丁酸梭菌》规定铅≤10 mg/kg。综合考虑,本文件将铅(以 Pb 计)含量定为≤5 mg/kg。

表 41: 铅含量

样品	Pb(mg/kg)	样品	Pb(mg/kg)
1	0.12	12	0.170
2	4.146	13	0.334
3	0.088	14	0.296
4	0.112	15	0.086
5	0.116	16	0.189
6	0.079	17	0.303
7	0.565	18	1.400
8	0.477	最大值	4.146
9	1.270	最小值	0.086
10	0.404	平均值	0.607
11	0.765		

14 汞的测定

采用 GB/T 13081《饲料中汞的测定》测定汞含量,结果见表 42,最大值 0.042 mg/kg,最小值 0.005 mg/kg,平均值 0.017 mg/kg。GB 13078-2017《饲料卫生标准》中规定"其他饲料原料 \leq 0.1 mg/kg",NY/T 1444-2007《微生物饲料添加剂技术通则》、NY/T 4347-2023《饲料添加剂 丁酸梭菌》、GB 7300.501-2021《饲料添加剂 第 5 部分:微生物 酿酒酵母》、GB 7300.502-2023《饲料添加剂 第 5 部分:微生物 植物乳杆菌》、GB 7300.503-2023《饲料添加剂 第 5 部分:微生物 屎肠球菌》、GB 7300.504-2023《饲料添加剂 第 5 部分:微生物 嗜酸乳杆菌》中均规定汞 \leq 0.1 mg/kg。综合考虑,本文件规定汞含量 \leq 0.1 mg/kg。

表 42: 汞含量

样品	Hg (mg/kg)	样品	Hg (mg/kg)
1	0.019	12	0.014
2	0.011	13	0.013
3	0.019	14	0.005
4	0.013	15	0.014
5	0.012	16	0.027
6	0.024	17	0.014

7	0.042	18	0.013
8	0.018	最大值	0.042
9	0.013	最小值	0.005
10	0.014	平均值	0.017
11	0.025		

15 镉的测定

采用 GB/T 13082《饲料中镉的测定方法》测定镉含量,结果见表 43。结果表明,镉含量都比较低,最大值 $0.146\,\mathrm{mg/kg}$,最小值 $0.002\,\mathrm{mg/kg}$,平均值 $0.032\,\mathrm{mg/kg}$ 。 参考 GB 13078-2017《饲料卫生标准》中规定"植物性饲料原料 \leq 1.0 mg/kg"、"其他矿物质饲料原料 \leq 2.0 mg/kg",NY/T 1444-2007《微生物饲料添加剂技术通则》、GB 7300.501-2021《饲料添加剂 第 5 部分:微生物 酿酒酵母》、GB 7300.502-2023《饲料添加剂 第 5 部分:微生物 植物乳杆菌》、GB 7300.503-2023《饲料添加剂 第 5 部分:微生物 屎肠球菌》、GB 7300.504-2023《饲料添加剂 第 5 部分:微生物 屠肠球菌》、GB 7300.504-2023《饲料添加剂 第 5 部分:微生物 嗜酸乳杆菌》中均规定镉 \leq 0.50 mg/kg。NY/T 4347-2023《饲料添加剂 丁酸梭菌》规定镉 \leq 2 mg/kg。综合考虑,本文件规定镉含量为 \leq 0.5 mg/kg。

表 43: 镉含量

样品	Cd (mg/kg)	样品	Cd (mg/kg)
1	0.008	12	0.047
2	0.007	13	0.021
3	0.009	14	0.095
4	0.005	15	0.072
5	0.002	16	0.022
6	0.013	17	0.006
7	0.012	18	0.025
8	0.005	最大值	0.146
9	0.015	最小值	0.002
10	0.146	平均值	0.032
11	0.057		

16 霉菌总数

采用 GB/T 13092《饲料中霉菌总数的测定》测定霉菌总数,测定值在2300 CFU/g 以内,部分未检出。GB7300.501-2023《饲料添加剂 第5部分: 微生物 酿酒酵母》中未规定霉菌总数,GB7300.502-2023《饲料添加剂 第5部分: 微生物 植物乳杆菌》和GB7300.503-2023《饲料添加剂 第5部分: 微生物 屎肠球菌》规定的 $<1\times10^4$ CFU/g,GB7300.504-2023《饲料添加剂 第5部分: 微生物 嗜酸乳杆菌》规定 $<1\times10^3$ CFU/g,NY/T 4347-2023《饲料添加剂 丁酸梭菌》规定 $<4\times10^4$ CFU/g。综合考虑,本文件规定霉菌总数 $<1\times10^4$ CFU/g。

样品	霉菌总数 (CFU/g)	样品	霉菌总数 (CFU/g)
1	114	12	_
2	232	13	
3	<100	14	_
4	<100	15	125
5	300	16	<100
6	1900	17	<100
7	2300	18	<100
8	<100	最大值	2300
9	122	最小值	<100
10	<100	平均值	414
11			

表 44: 霉菌总数

17 大肠菌群的测定

采用 GB/T 18869 《饲料中大肠菌群的测定》测定,只有 2 个样品检出,且均低于 1.0×10^3 MPN/100 g。GB 13078-2017《饲料卫生标准》和 GB 7300.501-2021《饲料添加剂 第 5 部分:微生物 酿酒酵母》中没有规定大肠菌群,GB 7300.502-2023《饲料添加剂 第 5 部分:微生物 植物乳杆菌》、GB 7300.503-2023《饲料添加剂 第 5 部分:微生物 屎肠球菌》、GB 7300.504-2023《饲料添加剂 第 5 部分:微生物 嗜酸乳杆菌》中均规定大肠杆菌群 $<1.0\times10^3$ MPN/100 g。NY/T 4347-2023《饲料添加剂 丁酸梭菌》规定 $<1.0\times10^4$ MPN/100 g。综合考虑,本文件中大肠菌群 $<1.0\times10^4$ MPN/100 g。

表 45: 大肠菌群含量

样品	MPN/100 g	样品	MPN/100 g
1		12	
2		13	
3		14	
4	<u>—</u>	15	
5		16	_
6	_	17	380
7	_	18	_
8		最大值	/
9		最小值	/
10	360	平均值	/
11			

注: —为低于定量限 (300 MPN/100 g)。

18 沙门氏菌的测定

采用 GB/T 13091《饲料中沙门氏菌的检测方法》检测沙门氏菌,结果见表 46,所测样品中均未检出沙门氏菌。本文件中规定沙门氏菌不得检出。

表 46: 沙门氏菌含量

样品	个/25 g	样品	个/25 g
1		12	
2	_	13	_
3		14	
4		15	
5		16	_
6		17	_
7		18	
8		最大值	
9	<u> </u>	最小值	_
10		平均值	<u> </u>
11	_		

19 黄曲霉毒素 B₁测定

选取部分样品进行检测,最大值 6.08 μg/kg,最小值 2.87 μg/kg,大部分低于

2 μg/kg。GB 13078-2017《饲料卫生标准》中规定"其他植物性饲料原料黄曲霉毒素 $B_1 \le 30$ μg/kg",GB 7300.501-2021《饲料添加剂 第 5 部分:微生物 酿酒酵母》中没有规定该指标,GB 7300.502-2023《饲料添加剂 第 5 部分:微生物 植物乳杆菌》、GB 7300.503-2023《饲料添加剂 第 5 部分:微生物 屎肠球菌》、GB 7300.504-2023《饲料添加剂 第 5 部分:微生物 嗜酸乳杆菌》中均规定黄曲霉毒素 B_1 制定为 ≤ 10 μg/kg,NY/T 4347-2023《饲料添加剂 丁酸梭菌》规定 ≤ 30 μg/kg。综合考虑,本文件将饲料添加剂凝结芽孢杆菌产品黄曲霉毒素 B_1 规定为 ≤ 10 μg/kg。

样品	AFB ₁ (μg/kg)	样品	AFB ₁ (μg/kg)
1	2.23	12	<2
2	4.01	13	<2
3	5.36	14	4.54
4	<2	15	3.86
5	<2	16	<2
6	<2	17	<2
7	3.56	18	<2
8	<2	最大值	6.08
9	6.08	最小值	2
10	<2	平均值	2.87
11	<2		

表 47: 黄曲霉毒素 B₁含量

20 玉米赤霉烯酮的测定

选取部分样品进行检测,最大值 0.11 mg/kg,最小值 0.03 mg/kg,检测结果均比较低。GB 13078-2017《饲料卫生标准》中规定"玉米皮、喷浆玉米皮玉米浆干粉玉米酒糟类产品玉米赤霉烯酮毒素要求为≤1.5 mg/kg",GB 7300.502-202 3《饲料添加剂 第 5 部分: 微生物 植物乳杆菌》、GB 7300.503-2023《饲料添加剂第 5 部分: 微生物 屎肠球菌》中规定玉米赤霉烯酮为≤0.1 mg/kg,GB 7300.504-2023《饲料添加剂第 5 部分: 微生物 嗜酸乳杆菌》中规定玉米赤霉烯酮为≤0.5 mg/kg,NY/T 4347-2023《饲料添加剂丁酸梭菌》规定≤1 mg/kg。综合考虑,预审稿中规定玉米赤霉烯酮制定为≤1 mg/kg,会上专家组结合实测数据,定向征求意见以及企业代表反馈情况,建议删除该指标。

表 48: 玉米赤霉烯酮含量

样品	玉米赤霉烯酮 (mg/kg)	样品	玉米赤霉烯酮 (mg/kg)	
1	< 0.01	12	< 0.01	
2	< 0.01	< 0.01		
3	0.11	14	0.03	
4	0.11	15	0.08	
5	< 0.01	16	< 0.01	
6	< 0.01	17	< 0.01	
7	< 0.01	18	< 0.01	
8	< 0.01	最大值	0.11	
9	0.09	最小值	0.03	
10	< 0.01	平均值	0.03	
11	0.016			

21 脱氧雪镰刀菌烯醇的测定

GB 13078 中规定饲料原料和饲料产品使用方法为 GB/T 30956《饲料中脱氧 雪腐镰刀菌烯醇的测定 免疫亲和柱净化-高效液相色谱法》,本文件也按照 GB/T 30956 执行,检测结果见下表。最大值为 1.9 mg/kg,最小值为 0.2 mg/kg,大部分样品含量低于检测限。GB 13078-2017《饲料卫生标准》中规定"植物性饲料原料含量脱氧雪腐镰刀菌烯醇毒素要求为≤5 mg/kg",GB 7300.502-2023《饲料添加剂第5部分:微生物 植物乳杆菌》、GB 7300.503-2023《饲料添加剂第5部分:微生物 屎肠球菌》中规定为≤1.0mg/kg,GB 7300.504-2023《饲料添加剂第5部分:微生物 嗜酸乳杆菌》中规定≤2.0 mg/kg,NY/T 4347-2023《饲料添加剂丁酸梭菌》规定≤5 mg/kg。综合考虑,预审稿将脱氧雪腐镰刀菌烯醇规定为≤2 mg/kg,会上专家组结合实测数据,定向征求意见以及企业代表反馈情况,建议删除该指标。

表 49: 脱氧雪腐镰刀菌烯醇含量

样品	DON (mg/kg)	样品	DON (mg/kg)
1	1.4	12	< 0.1
2	<0.1	13	< 0.1
3	<0.1	14	1.7
4	< 0.1	15	0.6
5	1.9	16	< 0.1

6	1.4	17	0.5
7	<0.1	18	< 0.2
8	<0.1	最大值	1.9
9	<0.1	最小值	0.2
10	1.6	平均值	0.57
11	<0.1		

22 保质期

36 家企标(表 1) 中规定的保质期为 12 个月的企业占比 63.89%, 18 个月占比 13.89%, 24 个月 13.89%, 该产品稳定性较好,整体保质期均较长。保质期与菌种特性、工艺等关系密切,因此,本标准规定,"未开启包装的产品,在规定的运输、贮存条件下,产品保质期应与标签中标明的保质期一致"。

23 与已发布同类标准指标比较

已确定指标同已发布同类标准进行比较,其中总砷、汞、镉、黄曲霉毒素 B₁、沙门氏菌、鉴别基本一致,铅、玉米赤霉烯酮、脱氧雪腐镰刀菌烯醇、霉菌 总数、大肠菌群指标值存在差异,已发布的5项产品标准均未规定杂菌率。

表 50: 相关标准对比

		NY/T 1444-	GB7300.501-	GB7300.502-202	GB7300.503-20	GB7300.504-2	NY/T	《饲料添加
	GB 13078-201	2007 《微	2023 《饲料	3《饲料添加剂	23 《饲料添加	023 《饲料添	4347-2023	剂 第5部
指标	7 《饲料卫生	生物饲料	添加剂 第5		剂 第5部分:	加剂 第5部	《饲料添	分: 微生物
	标准》	添加剂技	部分: 微生物	第5部分: 微生物 基本	微生物 屎肠	分: 微生物	加剂 丁酸	凝结芽孢杆
		术通则》	酿酒酵母》	物 植物乳杆菌》	球菌》	嗜酸乳杆菌》	梭菌》	菌》
总砷(以	其他矿物质饲							
As计) / (料原料	2.0	2.0	2.0	2.0	2	2	2
mg/kg)	10.0 mg/kg							
铅 (Pb) /	矿物质饲料原	5.0	1.5	5.0	5.0	E	10	-
(mg/kg)	料 15.0 mg/kg	5.0	1.5	5.0	5.0	5	10	5
汞 (Hg) /	其他饲料原料	0.1	0.1	0.1	0.1	0.1	0.1	0.1
(mg/kg)	0.1 mg/kg	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	其他矿物质饲							
镉 (Cd) /	料原料	0.5	0.5	0.5	0.5	0.5	2	0.5
(mg/kg)	2.0 mg/kg							
黄曲霉毒	其他植物性饲							
素B ₁ / (μg/	料原料30	10	/	10.0	10.0	10	30	10
kg)	竹原件 30							
玉米赤霉 烯酮/(mg/	其他植物性饲	无	/	0.1	0.1	0.5	1	/
kg)	料原料1		,	0.1	0.1	0.5	1	,
					<u> </u>			

脱氧雪腐 镰刀菌烯 醇/(mg/kg	植物性饲料原料5	无	/	1.0	1.0	2	5	/
霉菌总数 /(CFU/g)	谷物及其加工 产品 4.0×10 ⁴	2.0×10 ⁴	/	1×10 ⁴	1×10 ⁴	1×10³	4.0×10 ⁴	1×10 ⁴
大肠菌群 /(MPN/10 0g)	无	100	/	1×10³	1×10³	1×10³	1.0×10 ⁴	1.0×10 ⁴
沙门氏菌 (25g中)	不得检出	不得检出	不得检出	不得检出	不得检出	不得检出	不得检出	不得检出
杂菌率 (%)	/	有	/	/	/	/	/	/
形态鉴别	无	无	有	有	有	无	有	有
生理生化 鉴别	无	无	有	有	有	无	有	有
分子生物 学鉴别	无	无	有	有	有	无	有	有

(三) 第三方验证

邀请国家饲料质量检验检测中心、湖北省饲料质量监督检验站和辽宁省农产品及兽药饲料产品检验检测院三家单位进行第三方验证,具体结果见验证报告。下表仅为活菌数验证结果,活菌数回收率94%~116%之间,变异系数1.79%~5.66%。三家对凝结芽孢杆菌菌体形态的镜检结果、菌落形态和生理生化特征验证结果均一致。

活菌数 单位 样品 回收率 变异系数 $(\times 10^{10} \text{CFU/g})$ 国家饲料质量检验检测中 样品1 2.0~2.1 102%~110% 2.8% 样品2 1.5~1.6 94%~100% 2.4% 样品1 95.5%~108.8% 湖北省饲料质量监督检验 1.839~2.095 2.21%~4.36% 样品2 1.79%~5.66% 1.511~1.67 97.1%~107.3% 辽宁省农产品及兽药饲料 样品1 2.1~2.2 111%~116% 2.4% 产品检验检测院 样品 2 106%~113% 1.7~1.8 3.1%

表 51: 第三方验证结果

三、与有关法律、行政法规和其他强制行标准的关系,配套推荐性标准的制定情况

在本文件的制定过程中严格遵守国家有关方针、政策、法律和规章等,严格

执行强制性国家标准和行业标准,与有关的各种基础标准相衔接,遵循了政策性和协调性原则。

四、 与国际国标准化组织、其他国家或者地区有关法律法规 和标准的比对分析

未查询到包括 ISO、IEC、DIN、AFNOR、AENOR、BELST 等国际标准和国外标准。

五、 重大分歧意见的处理过程、处理意见及依据

本文件在制定过程中无重大分歧意见。

六、对强制性国家标准自发布日期至实施日期的过渡期(以下简称为过渡期)的建议及理由

建议按照强制性国家标准管理办法设置自发布日期至实施日期的过渡期为1年。在过渡期间,组织学习国家标准,加大对标准的宣传及贯彻力度,标准委员会作为企业之间的桥梁,做好沟通,推进行业的进一步发展。过渡期内,企业应在标准发布2个月内对产品进行以上指标的测定与甄别。对于满足要求的产品,确认产品标签是否需根据标准重新进行修改、设计和印刷,如需修改,与供应商及时进行确认,对已经印刷的包装材料进行消耗。对于不满足要求的产品,在标准实施前,进行产品库存销售,并保证不满足要求老旧产品在过渡期结束时退出市场,同时根据企业情况评估是否需要购进或改进技术装备、检测手段等,以配合产品的质量达标或相关检测,与上游供应商沟通确认产品标签,与下游客户沟通修改质量规格协议,修订相关合同内容。

七、与实施强制性国家标准有关的政策措施

根据《强制性国家标准管理办法》第九条,县级以上人民政府标准化行政主管部门和有关行政主管部门依据法定职责,对强制性国家标准的实施进行监督检查。根据《饲料和饲料添加剂管理条例》第三条规定,国务院农业行政主管部门负责全国饲料、饲料添加剂的监督管理工作。县级以上地方人民政府负责饲料、饲料添加剂管理的部门(以下简称饲料管理部门),负责本行政区域饲料、饲料添加剂的监督管理工作。第四条,县级以上地方人民政府统一领导本行政区域饲

料、饲料添加剂的监督管理工作,建立健全监督管理机制,保障监督管理工作的开展。

违反该强制性国家标准的行为,依据第 609 号国务院令《饲料和饲料添加剂管理条例》、农业农村部第 2625 号《饲料添加剂安全使用规范》、主席令 2000年第 33 号《中华人民共和国产品质量法》和主席令第 11 号《中国人民共和国标准化法》等相关法律法规条款进行处理。

八、是否需要对外通报的建议及理由

按照《全国饲料工业标准化技术委员会标准预审管理办法(实行)》的要求,强制性国家标准进行 WTO 成员国官方通报,期限一般为 60 天。本标准已于 xx 年 x 月 x 日完成 WTO 成员国官方通报。

九、废止现行有关标准的建议

没有需要废止的相关标准。

十、涉及专利的有关说明

本文件不涉及专利。

十一、 强制性国家标准所涉及的产品、过程或者服务目录

本文件适用于以中华人民共和国农业农村部公告《饲料添加剂品种目录》中规定的饲料添加剂凝结芽孢杆菌产品。

十二、 其他应予说明的事项

无其他需进行说明的事项。