《牙膏中总氟化物的测定 直接电位法》编制说明

一、任务来源及起草单位

(一) 任务来源

本标准化文件由广东省质量检验协会立项。

(二) 归口和编制单位

本文件由广东省质量检验协会归口。

本文件编制单位:。

主要起草人:。

二、标准制定的目的和意义

测定牙膏中总氟化物的核心目的在于确保其防龋功效与使用安全性,这对于产品质量控制和公共健康具有重要意义。氟化物是国际公认最有效的防龋成分,它通过促进牙釉质再矿化、抑制细菌活动来预防蛀牙。因此,测定的首要意义是质量控制,确保产品中氟化物含量符合国家标准,能达到宣称的防龋效果,避免因含量不足而成为"无效产品"。

同时,测定也具有关键的安全意义。过量摄入氟化物可能导致氟斑牙甚至氟骨症等健康问题,特别是对吞咽反射尚不完善的儿童存在风险。通过精确测定总氟含量,可以确保其在安全范围内,防止消费者尤其是儿童因长期使用而摄入过量氟。

综上,该测定是平衡牙膏"有效性"与"安全性"的关键技术手段,既是生产企业履行责任的体现,也是监管部门保障公众口腔健康与身体安全的重要防线。

三、编制过程

(一) 标准起草分工

2025年01月-02月,标准制定启动,成立了标准编制领导小组和工作小组,以安利(中国)日用品有限公司、广东省食品工业研究所有限公司等单位的技术骨干为工作小组,制定了标准编制计划表,按计划逐一落实标准制定工作任务,

由安利(中国)日用品有限公司负责提供样品,并对样品进行测试、数据分析收集、查阅、收集相关资料,其他起草单位负责标准的起草、撰写、修订。

(二) 标准起草过程

2025年03月-04月,起草工作组通过查阅、收集国内外相关的法律法规、相关标准等资料,认真分析、比对研究相关资料,明确标准编制研究方向,明确样品对象及内容,并根据测定方法的实际情况编写标准草案。

2025年05月08日起草工作组召开了制定工作会,会议重点对试样前处理条件、仪器参考条件等标准内容进行探讨,确定标准编制思路及下一步工作方向和内容。

2025年6月-2025年7月,根据制定工作会通过的工作方案,按照工作计划和安排,安利(中国)日用品有限公司组织开展样品收集、方法开发等工作,并进行数据统计分析工作。

2025年8月,根据样品测定结果和讨论意见进行了汇总分析,并形成了方法验证报告,工作组在此基础上提出标准草案。

(三) 征求意见稿形成情况

2025年9月-2024年10月,起草工作组就前期研究情况进行认真总结,针对主要前处理条件和仪器参考条件达成一致意见,形成标准征求意见稿。

四、标准制订的基本原则和依据

(一) 基本原则

本标准按照《中华人民共和国食品安全法》、《团体标准管理规定》、GB/T 1.1-2020《标准化工作导则 第 1 部分:标准化文件的结构和起草规则》、GB/T 20001.4-2015 《标准编写规则 第 4 部分:试验方法标准》相关要求编写。

(二) 标准依据

本文件主要参考了的国家标准有以下:

GB/T 27404-2008 《实验室质量控制规范 食品理化检测》:

GB/T 27417-2017 《合格评定 化学分析方法确认和验证指南》。

五、主要条款的说明, 主要技术指标、参数、试验验证的论述

(一) 主要条款

本文件描述了测定牙膏中总氟化物含量的测定(直接点位方法)。

本文件适用于以氟化钠为氟离子来源、二氧化硅为研磨剂的牙膏中总氟化物的分析。

(二)参数

1.校正常数

校正常数是通过牙膏本身的含水体积给计算得出。

表 A.1 校正常数参考值

2. 附录 A 校正常数参考值的制定依据

本项目的校正常数参考值通过以下试验方法得出:

2.1 仪器及试剂

- 2.1.1 分析天平精度 0.1mg
- 2.1.2 涡旋振荡器
- 2.1.3 离心机
- 2.1.4 烘箱
- 2.1.5 若干塑料离心管
- 2.2 样品处理及测试
- 2.2.1 获取三份牙膏样品 (建议来自不同生产批次)
- 2.2.2 每个样品制备5份平行样(共15份)

- a.称量 50mL 离心管 (含转子, 不带盖), 记录重量后去皮;
- b.精确称取 5g±0.1g 牙膏(精度 0.1mg)至离心管,记录净重(不带盖);
- c.样品管去皮后加入 15mL 去离子水, 精确记录水量(精度 0.1mg)。用涡旋振荡器混悬 2 分钟, 确保膏体完全分散且管壁无残留;
 - d.17000rpm 离心 5 分钟,将上清液倾入烧杯保留(用于步骤 k);
- e.沿管壁缓慢加入 15mL 去离子水 (避免扰动膏体沉淀),按步骤 d 再次离心, 弃去此次上清液:
 - f. 重复步骤 e:
- g. 将离心管(含膏体沉淀及搅拌子,不带盖)置于105℃烘箱干燥至少3小时(注:高温会降低离心管强度,废弃这些离心管(完成本次实验后后不可重复使用,因高温处理会导致离心管在后续离心过程中破裂);
 - h.将离心管置于干燥器中冷却至室温;
 - i.称量每支干燥后的离心管并记录重量(不带盖):
- j.干燥牙膏重量计算:从初始(离心管+搅拌子+牙膏)总重中减去干燥后离心管重量。对所有15份样品重复此步骤;

k.初始上清液重量测定:用移液管吸取 10mL 上清液至新烧杯,记录重量。 对所有 15 份样品重复此步骤。

2.3 计算

- 2.3.1 密度测定 (ρ);
- ρ=移取上清液重量(精度 0.1mg)/移取的体积(10mL);
- b. 取 15 份重复样品的平均值;
- 2.3.2 重量百分比测定 (Wt%);
- 2. Wt%=将步骤j所得的干燥后牙膏重量(精度 0.1mg)/步骤 b 中牙膏的初始重量(精度 0.1mg)*100%;
 - b. 取 15 份重复样品的平均值:

2.3.3 校正常数测定 (C)

$$C = \frac{\frac{(m_0 - m_0 \times W_t\%) + m_w}{\rho} - V_w}{m_0}$$

式中:

C--校正常数 (ml/g);

m0--牙膏称样量 (g);

Wt%--重量百分比 (%);

mw--15mL 去离子水重量 (g);

ρ--密度 (g/ml);

Vw --去离子水体积 15mL (mL);

结果保留小数点后4位有效数字。

2.4 允许差

两次平行结果的允许差为±10%。

(三) 试验验证

1 方法原理

试样中的氟经水提取,在一定的总离子强度下,用氟离子选择电极测定,溶液中 氟离子电位值与氟离子浓度的对数值在一定浓度范围内呈线性关系,与校准系列 比较定量。

2 适用范围

本方法适用于以氟化钠为氟离子来源、二氧化硅为研磨剂的牙膏中总氟化物的分析。

- 3 验证过程所用的仪器和设备、试剂和材料
- 3.1 仪器和设备
 - a. 数字 pH 离子综合测试计 , Thermo Orion DUAL STAR pH/ISE Meter (CP016);

- b.分析天平, METTLER TOLEDO XPR205 感量为 0.1 mg (CB004);
- c. 磁力搅拌器 (8 联), JOANLAB;
- d.振荡器, IKA VORTEX 3;
- 3.2 试剂和材料:

除非另有说明,本方法所用试剂均为分析纯,水为去离子水。

- a. 氢氧化钠, 广州化学试剂厂, 分析纯;
- b.三羟甲基氨基甲烷 (THAM), Sigma , 分析纯;
- c. 乙二胺四乙酸二钠 (EDTA), 国药集团化学试剂有限公司, 分析纯;

3.3 对照品:

名称	品牌	批号	内部编号	纯度 (ppm)
氟离子标准溶液	Merck	HC44230914	R012-043	1001

3.4 实验样品:

样品	样品名称	批号
1	含氟牙膏	5155KD53
2	白茶牙膏	5164KE12
3	儿童牙膏	5105P923

4方法验证

4.1 准确性

按照方法要求检测样品 1、样品 2 和样品 3 , 并分别将样品 1、样品 2 和样品 3 送至其它第三方检测机构, 对结果进行比较, 计算结果的相对偏差。

样品	结果 A (%)	结果B(%)	结果 C (%)	相对偏差(%)	比对实验室
1	0.09	0.09	0.06	0.0	A 本实验室
2	0.09	0.09	0.06	0.0	B 中广测
3	0.09	0.09	0.06	0.0	C广州质检院

4.2 重复性

同一分析员连续测定按规定浓度配制的 3 个样品 (分别 6 平行测定), 计算 3 个样品测定结果的相对标准偏差 (计算 6 个平行样品测定结果):

序号	总氟含量(%)			
	样品1	样品 2	样品3	
1	0.09	0.09	0.06	
2	0.09	0.09	0.06	
3	0.09	0.09	0.06	
4	0.09	0.09	0.06	
5	0.09	0.09	0.06	
6	0.09	0.09	0.06	
平均值	0.09	0.09	0.06	
RSD%	0.0	0.0	0.0	

4.3 中间精密度

两个分析员连续同时测定按规定浓度配制的 3 个样品(分别 6 平行测定), 计算 3 个样品测定结果的相对标准偏差(计算 18 个平行样品测定结果):

	总氟含量(%)					
序号	样。	品 1	样品 2		样品3	
	人员1	人员2	人员1	人员 2	人员1	人员 2
1	0.09	0.09	0.09	0.09	0.06	0.06
2	0.09	0.09	0.09	0.09	0.06	0.06
3	0.09	0.09	0.09	0.09	0.06	0.06
4	0.09	0.09	0.09	0.09	0.06	0.06
5	0.09	0.09	0.09	0.09	0.06	0.06
6	0.09	0.09	0.09	0.09	0.06	0.06
平均值	0.	09	0.	09	0.	06
RSD%	0	.0	0	.0	(0.0

5 结果

根据 GB/T 27417-2017 《合格评定 化学分析方法确认和验证指南》,验证方法的准确度,通过试验对测量结果的偏倚进行评估,重复性相对标准偏差范围 0%,

准确性的相对标准偏差为0%。以上试验结果符合标准的要求,证明方法标准具有良好的准确度。

参数	通用认可标准	实验结果		
重复性	6个测定结果的相对标准偏差 ≤10%	6 个结果的相对标准偏差: 0.0%		
	(0.001%<待测组分含量≤1%)			
测定结果的相对偏差 ≤20% 准确性		与第三方结果的相对偏差分别是: 0.0 %和		
作佣任	(待测组分含量≤0.1%)	0.0%		

注: 企业标准 L0725 的精密度要求, RSD < 3%

6结论

牙膏中总氟的检验方法:本试验与 《化妆品安全技术规范》(2015年版)第四章 3.16 气相色谱法(国家药品监督管理局 2025年第18号通告)相比,其检测原理,设备及前处理的提取方法等均改变。基于这些变化,对准确性,重复性等参数进行验证,验证结果表明各项参数达到了方法的既定目的,该方法通过验证,适用于以氟化钠为氟离子来源、二氧化硅为研磨剂的牙膏中总氟化物的分析。

六、标准中如果涉及专利,应有明确的知识产权说明 无。

七、采用国际标准或国外先进标准的,说明采标程度,以及国内外同类标准水平的对比情况

无。

八、重大分歧意见的处理经过和依据 _{无。}

九、标准的建议及其理由

建议本标准自发布之日开始实施。

十、宣贯标准的要求和措施建议(包括组织措施、技术措施、过渡办法、实施日期等)

无。

十一、其它应予说明的事项

无。

编制工作组 2025年10月16日