修订《饲料添加剂 第3部分: 矿物元素及其络 (螯)合物 磷酸氢钙》国家标准 编制说明

(征求意见稿)

《饲料添加剂 第3部分:矿物元素及其络(螯)合物 磷酸氢钙》 国家标准起草工作组 2025年1月

修订《饲料添加剂 第3部分:

矿物元素及其络(螯)合物 磷酸氢钙》国家标准编制说明

(征求意见稿)

一、工作简况

(一) 任务来源

1、基本信息

根据"国标委发[2024]24号"《国家标准化管理委员会关于下达《桑蚕原种》等 44 项强制性国家标准制修订计划及相关标准外文版计划的通知》的要求,2024年至 2025年完成《饲料添加剂 第 3 部分:矿物元素及其络(螯)合物 磷酸氢钙》(以下简称《饲料添加剂磷酸氢钙》)强制性国家标准的修订工作,项目计划号:20241035-Q-326。本标准由中华人民共和国农业农村部提出并归口。

本标准负责起草单位:中海油天津化工研究设计院有限公司、四川省饲料工作总站、四川龙蟒磷化工有限公司、中化云龙有限公司、云南磷化集团有限公司、贵州磷化(集团)有限责任公司、云南新龙矿物质饲料有限公司。

2、产品简要情况

1) 产品概况

化学名称:磷酸氢钙

分子式: I 型为 CaHPO4·2H2O; II 型和 III 型为 Ca(H2PO4)2·H2O+CaHPO4·2H2O

产品性质: 白色粉末或颗粒,无嗅无味;溶于稀盐酸、硝酸、醋酸,不溶于乙醇,I型产品微溶于水,吸湿性较小。II型和 III型产品呈中性,熔于稀酸,约40%溶于水。其结晶水的键合力很脆弱,加热至90℃开始逐渐失去结晶水,变成一水或无水磷酸氢钙;当温度高达175℃时,可形成焦磷酸钙。

产品用途:主要作用是提供磷元素和钙元素,磷酸氢钙的磷钙比(1:1.29)与动物骨胳中的磷钙比最为接近,两种产品能全部溶于动物胃酸中。可加速畜禽生长发育,缩短育肥期,快速增重;能提高畜禽的配种率及成活率,同时具有增强畜禽抗病耐寒能力,对畜禽的软骨症、白痢症、瘫疾症有防治作用。

2) 国内生产情况

国内饲料添加剂磷酸氢钙生产企业约 40 家,2024 年总产量约 290 万 t,其中 I 型产品产量约 204 万 t,占比为 70%; III 型产品产量接约 88 万 t,占比为 30%,目前市场上未发现 II 型产品进行生产和销售。主要生产企业分布在云南、贵州、四川和湖北等地区,主流生产工艺有 2 种,即以磷矿石、硫酸和钙盐(碳酸钙或氧化钙)为主要生产原料的稀酸法和浓酸法。

修标过程中发现了第3种生产工艺,即植酸水解法,该生产方法国内只有1家生产企业,年产量在4万t左右,占比很小。其产品接近无水磷酸氢钙,与国家标准规定的产品在分子结构上存在差异,综合考虑本次修订未将该工艺纳入标准范围。

产量占比较大的国内企业生产情况汇总于表 1。

表 1 产量占比较大的国内生产企业情况汇总

序号	企业名称	许可证书编号	产品/产量	生产工艺
1	云南磷化集团有限公司	滇饲添(2024)T01007	III 型/55 万 t	浓酸法
2	南漳龙蟒磷制品有限责任公司	鄂饲添(2023)T05003	I型/33万 t	稀酸法
3	云南胜威化工有限公司	滇饲添(2020)T01021	I型/30万 t	稀酸法
4	天宝动物营养科技股份有限公司	滇饲添(2024)T09030	I型/30万 t	稀酸法
5	瓮福 (集团) 有限责任公司	MA 左 (2024) TO 4002	I 型/8.8 万 t	稀酸法
3	(现贵州磷化集团有限公司)	黔饲添(2024)T04003	III 型/10 万 t	浓酸法
6	昆明云盘山农牧科技有限公司	鄂饲添(2021)T01025	I 型/16 万 t	稀酸法
7	中化云龙有限公司	滇饲添(2022)T01032	III 型/16 万 t	浓酸法
8	赤峰润邦动物营养科技有限公司	鄂饲添(2022)T06050	I 型/15 万 t	稀酸法
9	云南新龙矿物质饲料有限公司	滇饲添(2020)T01042	I 型/14 万 t	稀酸法
10	山东省滨州市利丰达化工有限公司	鲁饲添(2023)T13009	I 型/12 万 t	稀酸法
11	广西鑫益新磷化工有限公司	桂饲添(2020)T08001	I 型/8 万 t	稀酸法
12	云南富民世翔饲料添加剂有限公司	滇饲添(2021)T01026	I 型/8 万 t	稀酸法
13	昆明川金诺化工股份有限公司	滇饲添(2022)T01033	I 型/8 万 t	稀酸法
			III 型/7 万 t	浓酸法
14	四川天黎新材料有限公司	川饲添(2020)T16001	I 型/5.5 万 t	稀酸法
15	攀枝花东立磷制品有限公司	川饲添(2021)T03004	I 型/5 万 t	稀酸法
16	其他约 20 家企业		I 型/约 11 万 t	稀酸法

3) 国内磷矿中主要有害杂质分布情况

中国磷矿资源丰富,储量位居世界第三,主要分布在云南、贵州、湖北和四川 4 省,4 省的磷矿储量占全国总储量的 93%,云南省的昆阳、贵州省的开阳和湖北省的襄阳是主要的磷矿产地。目前,中国磷矿石的开发利用面临资源消耗快、开采技术落后等挑战。为了应对这些问题,政府采取了一系列措施,包括控制新增产能、限制出口等,以促进资源的合理利用和保护环境。

本次修订标准对标准中涉及的有害杂质元素在国内磷矿中的分布情况进行了调研,结果列于表 2。可以看出国内不同地区磷矿中有害杂质分布情况具有差异化,如云南磷矿中铅和铬含量较高,贵州磷矿中氟和砷含量较高,四川磷矿中铬含量较高。

	衣 2 1	71年179次17月百	示 则儿系任凶内%	4.0 1.01/2/1/101100	T
地区	氟(F)/	砷(As)/	铅(Pb)/	镉(Cd)/	铬(Cr)/
地区	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
云南省	7800~27600	22~29	21~210	2~5	20~60
贵州省	23500~32600	34~44	17~51	1~2	11~26
湖北省	20000	18	9	0.5	22
四川省	26000	10	8	7	100

表 2 标准中涉及的有害杂质元素在国内磷矿中的分布情况

4) 生产方法

a)稀酸法

稀酸法又称为"多段中和法",该工艺主要用来生产 I 型产品。首先以磷矿和硫酸为原料生产二水磷酸,二水磷酸通过脱硫等预处理后获得粗磷酸;粗磷酸通过加入脱砷剂、碳酸钙浆、氢氧化钙乳液等脱除氟、砷、铅、镉、铬等杂质,获得精制磷酸。精制磷酸与精制氢氧化钙乳液反应,获得磷酸氢钙料浆,磷酸氢钙料浆通过固液分离后,获得磷酸氢钙半成品,再经干燥、筛分和冷却,获得饲料添加剂磷酸氢钙 I 型产品。该工艺在萃取磷酸和脱硫磷酸工序过程进行了杂质的有效脱除,产品中砷、铅、镉和铬含量符合 2017 年版标准的要求。

以稀酸法生产的 I 型磷酸氢钙浆料为原料,再与浓缩磷酸反应,可继续生产磷酸氢钙 II 型和 III 型产品。

稀酸法工艺流程见图 1。

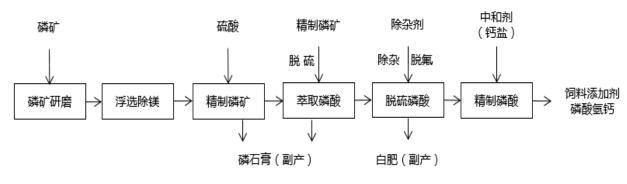


图 1 稀酸法工艺流程

b) 浓酸法

国内浓酸法工艺用于生产磷酸氢钙 III 型产品。磷矿浆与硫酸在萃取槽中反应得到磷酸和磷石膏的混合料浆,过滤得到稀磷酸。稀磷酸进入闪蒸室蒸发浓缩,在去除水分的同时逸出大量含氟气体制备成浓缩磷酸,浓缩磷酸进入脱砷脱氟装置进行脱砷脱氟。钙矿粉与脱氟磷酸反应生成磷酸氢钙,进入造粒机捏合造粒制得粒状磷酸氢钙 III 型半成品,通过干燥、筛分制得饲料添加剂磷酸氢钙 III 型产品。该工艺特点主要是磷资源利用率高,三废排放低,无白肥产生,可回收利用氟资源,产品中氟、砷、铅脱除率高。产品中含氟、砷、铅较低,但铬含量相对较高,经分析产品中铬主要以三价铬形式存在。

浓酸法工艺流程见图 2。

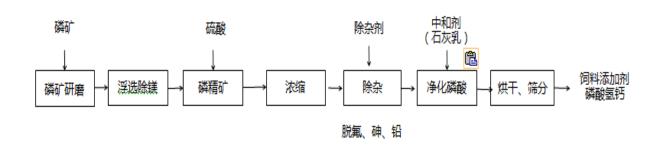


图 2 浓酸法工艺流程

c) 植酸水解法

菲汀(植酸钙)经高温水解,得到肌醇与磷酸氢钙混合物料,使用板框压滤机分离得到磷酸氢钙滤饼,将磷酸氢钙滤饼烘干粉碎后制得饲料添加剂磷酸氢钙成品。该产品组成接近无水磷酸氢钙,产

品原料为非矿物来源,因此产品中砷、铅和镉含量均不高,只有铬含量相对较高。 植酸水解法工艺流程见图 3。

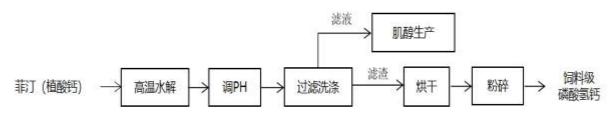


图 3 植酸水解法工艺流程

5) 样品采集情况

本次修订标准采集了来自国内 10 家主要生产企业的 55 份样品,其中 I 型样品 35 个, III 型样品 20 个。样品采集情况见表 3。

企业	地区	样品编号	产品型号/生产工艺
A	贵州	1#~5#	I 型/稀酸法
В	湖北	6#~10#	I 型/稀酸法
С	云南	11#~15#	I 型/稀酸法
D	四川	16#~20#	I 型/稀酸法
Е	云南	21#~25#	I 型/稀酸法
F	云南	26#~30#	I 型/稀酸法
	二去	31#~35#	I 型/稀酸法
G	云南	36#~40#	III 型/浓酸法
Н	云南	41#~45#	III 型/浓酸法
I	云南	46#~50#	III 型/浓酸法
J	贵州	51#~55#	III 型/浓酸法

表 3 饲料添加剂磷酸氢钙样品采集情况汇总

(二)修订背景

目前饲料添加剂磷酸氢钙产品生产工艺主要有稀酸法和浓酸法 2 种,现行标准个别技术指标,主要适用于稀酸法工艺生产的 I 型产品。2014 年后陆续有生产企业投产或进行工艺改进,采用浓酸法生产饲料添加剂磷酸氢钙III型产品,该工艺具有磷资源利用率高,三废排放低,无白肥产生,氟资源利用率高,砷、铅脱除率高等优势。随着 III 型产品在饲料行业应用研究的不断深入,其产量和使用量也得到快速提升,但 III 型产品中铬含量指标无法满足 2017 年版标准的要求。饲料添加剂磷酸氢钙产品中有害杂质元素含量与磷矿品质和工艺相关性较大,2017 年版标准与当前实际生产情况和磷资源开采利用情况出现不符。

2023 年 8 月农业农村部委托全国饲料工业标准化技术委员会对 GB 22549—2017《饲料添加剂 磷酸氢钙》标准进行复审,通过对标准适用性、规范性、时效性和协调性等内容进行全面评估,提出了建议修订的复审结论。2023 年 10 月上报了标准修订计划,2024 年 5 月批准下达修订计划。本次修订标准将进一步规范饲料添加剂磷酸氢钙产品质量、指导企业生产,对保护饲养动物健康及人身安全具有十分重要的意义。

(三) 主要起草过程

1、起草阶段(2024.6~2024.12)

(1) 调查研究过程

中海油天津化工研究设计院有限公司(以下简称天津院)接到修订计划任务后,于 2024 年 6 月进行了调研及资料准备工作。首先查阅了国内外标准及有关技术资料,并向生产、使用单位发函进行调查,广泛征求对标准修订工作的意见和建议。

(2) 起草工作组及分工情况

天津院主要负责资料收集、编写文献小结、编制方法验证试验方案、开展试验验证工作、编写标准各阶段草案、编制说明及相关附件等工作。其他单位主要负责配合试验方法验证和数据统计、参加工作会议讨论、对标准过程稿件提出修改意见、协助完成征求意见等工作。

(3) 方法验证及工作过程

2024年7月在贵州省福泉市召开了修订该国家标准工作会,到会的单位有贵州省兽药饲料检测所、四川省饲料工作总站、中海油天津化工研究设计院有限公司、瓮福(集团)有限责任公司等10家单位。会上生产单位就各自的产能、生产工艺、产品质量和用户使用情况进行了介绍。与会代表就标准范围、指标项目和指标参数、分析方法及检验规则、包装、贮存、运输等内容进行了讨论,基本掌握了贵州地区磷酸氢钙的生产情况,并安排了样品收集和试验验证工作。

在基本完成前期试验验证和调研工作后,2024年12月在云南省昆明市召开了工作会议,到会的单位有全国畜牧总站、四川省饲料工作总站、云南省饲料工业协会、中海油天津化工研究设计院有限公司、贵州川恒化工股份有限公司、昆明云盘山农牧科技有限公司、四川天黎新材料有限公司、新希望化工投资有限公司、云南新龙矿物质饲料有限公司、贵州越都化工有限公司、川发龙蟒南漳龙蟒磷制品有限责任公司、云南胜威化工有限公司、中化云龙有限公司、昆明川金诺化工股份有限公司、瓮福(集团)有限责任公司、天宝动物营养科技股份有限公司、四川龙蟒化工有限公司、云南磷化集团有限公司共18个单位。会议就前期调研和试验验证情况进行通报,参会代表对铬含量指标等问题进行了讨论研究,基本形成了一致性的意见。会后继续进行试验验证工作。

方法验证试验数据见表 5~表 10,产品验证数据见附表 2。

2、行业内定向征求意见阶段(2025.1~2025.2)

在起草阶段前期相关试验工作完成的基础上,2025年1月召开了线上工作会议,对前期尚未确定的铬指标等技术问题进行了更加细致的讨论和研究,各方代表充分发表了各自的观点和理由。经过讨论最终确定了该标准铬含量指标等技术内容,中海油天津院组织对标准草案稿进行了讨论和修改。其后提出标准草案征求意见稿及编制说明,同时开展定向征求意见和公开征求意见,征求意见对象为生产企业、检验检测机构、饲料行业专家和下游用户。

二、编制原则、强制性国家标准主要技术要求的依据(包括验证报告、统计数据等)及理由

(一) 编制原则

- 1、GB/T 1.1-2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》;
- 2、贯彻国家的有关方针、政策、法律、法规;

- 3、有利于合理开发和利用国家资源,推广科学技术成果;
- 4、积极采用国际标准和国外先进标准,促进对外经济技术合作与对外贸易的发展;
- 5、保障安全和人民的身体健康,保护环境;
- 6、充分考虑使用要求,维护消费者的利益;
- 7、技术先进、经济合理、安全可靠、协调配套。

(二) 强制性国家标准主要技术要求的依据及理由

1、国内相关标准对比分析

收集到的国外标准有美国饲料管理协会(AAFCO)《饲料成分定义指南》和(EU) No 682013 欧盟《饲料原料目录》。这两个标准不是针对饲料添加剂磷酸氢钙的产品标准,只是对饲料添加剂磷酸氢钙产品的总磷、钙和氟含量进行了粗略要求。

国内磷酸氢钙产品标准有 GB 22549—2017《饲料添加剂 磷酸氢钙》(以下简称 1997 年版标准)、GB 1886.3—2021《食品安全国家标准 食品添加剂 磷酸氢钙》、农业部公告 2017 年第 2625 号《饲料添加剂安全使用规范》。各标准指标对比见附表 1。

饲料添加剂产品标准中总磷和钙含量与农业部公告 2017 年第 2625 号要求是一致的,但本标准与食品添加剂产品标准在指标设置和要求上存在很大差异。

本次修订标准以 1997 年版标准为基础,通过对个别指标和试验方法进行调整和改进,使标准技术内容更加科学合理,满足饲料行业使用要求。

2、指标值及试验方法的确定依据

本次修订标准以满足饲料行业 GB 13078-2017 的规定为前提,充分考虑国内实际生产情况,以当前实际检测数据作为考量依据,参考相关方的意见和建议,结合农业部公告 2017 年第 2625 号《饲料添加剂安全使用规范》推荐添加量确定饲料添加剂磷酸氢钙的主要技术指标和试验方法。

1) 铬含量指标要求的修订

现行标准是根据 2012 年标准研制时的产品产业化情况确定的技术指标,已与当前实际生产情况和磷资源开采利用情况不符,从目前国内主要产品生产工艺和产品质量情况分析,矿物来源的饲料添加剂产品中有害杂质元素含量与磷矿品质和工艺相关性较大。受此影响,产品中铬含量指标需要根据目前情况调整,主要理由如下:

(1) 现行标准研制背景和适用性方面。现行标准是于 2012 年立项并开展研制工作的,当时国内主要产品为稀酸法生产的饲料添加剂磷酸氢钙 I 型产品,少量稀酸法生产的饲料添加剂磷酸氢钙 II 型产品和III型产品,其产品铬含量实测结果满足不大于 30 mg/kg,以此为依据设置了现行标准的铬含量指标要求。2014 年以后,受国内外生产技术推动和国家磷资源综合利用要求的提升,国内大型磷化工企业逐步开始采用浓酸法生产饲料添加剂磷酸氢钙III型产品,该工艺具有磷资源利用率高,三废排放少的优势。随着 III 型产品在饲料行业应用研究的不断深入,其产量和使用量也得到快速提升,目前已占据磷酸氢钙产品市场总额的 30%,成为饲料添加剂磷酸钙盐产品的必要补充,且行业内仍在积极布局该产品投产并扩大产能。而浓酸法生产系统呈酸性无法大幅度降低铬含量,且III型产品中总磷含量较高,磷矿带入的铬量也相应较高,导致大部分产品无法满足 30 mg/kg 铬含量现值要求。综上所述,从现行标准的制定历史背景来看不大于 30 mg/kg 的要求主要适合于 I 型产品和少量稀酸法生产

的Ⅲ型产品,现行标准已不满足生产销售实际,急需修标调整。

(2)产品理论组成和实际情况方面。通过分析发现饲料添加剂磷酸钙盐产品中铬主要是由磷矿生产的湿法磷酸带入,实测结果表现为随着磷酸钙盐中总磷含量增高,相应的铬含量也会增高(见图4)。现行 2017 年版标准中规定的 3 个型号产品总磷含量从 16.5%到 21.0%,而 3 个型号产品的铬含量指标只统一规定了 1 个限值要求,即不大于 30 mg/kg,因此从理论和实际来讲不同型号产品随总磷含量的增高设置符合产品实际情况的不同铬含量限值要求是更为科学合理的。

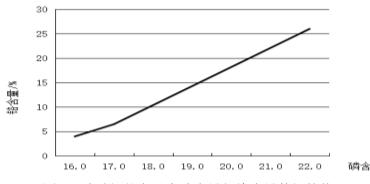


图 4 磷酸钙盐产品中磷含量与铬含量数据趋势

- (3)饲料中的添加量和安全性方面。针对浓酸法生产的饲料添加剂磷酸氢钙 III 型产品,由中国农业科学院饲料研究所等国内权威研究机构进行了III型产品"在畜禽和水产动物饲料中应用研究(项目编号:YTHZWYJY2016004)",研究结果表明 III 型产品在仔猪、肉仔鸡、肉鸭和大口黑鲈饲料的生物学效价高于 I 型产品,其达到相同效果的添加量仅为 I 型产品的 0.7 倍,与目前产品实际应用情况相符。由于该产品添加剂量的减小,适当放宽 III 型产品铬含量指标,不会造成由产品带入饲料中铬含量的大幅增加,可控制在合规范围之内。
- (4) 推动技术革新和便利贸易方面。目前市售饲料添加剂磷酸氢钙产品仍以 I 型产品为主,占据饲料添加剂磷酸钙盐产品的 70%,但因 III 型产品浓酸法工艺具有磷资源利用率高,砷、铅脱除率高,三废排放低,无白肥产生,可充分利用磷矿中氟资源等优势,近年来受到国内主要磷化工企业的重视,产能逐步扩大,已由最初的 18 万吨年产量扩大到现在的近 90 万吨年产量,生产企业由 1 家扩大到 5 家,包括中化云龙、云南磷化、贵州磷化、昆明川金诺、贵州川恒(新建中),均为大型国有企业,因此该产品已经成为饲料添加剂磷酸钙盐产品的重要组成。目前由于现行标准铬含量限值控制,只有少数低铬磷矿或稀酸法生产的产品用于国内销售,大部分产品用于出口(国外对铬含量无要求)。基于 III 型产品较好的应用效果和低添加量,国外的需求量一直稳步增长,每年的出口量约为 50 万 t,出口国外饲料行业有法国缔玛,印尼正大,巴西食品,新希望海外公司,海大海外公司等。综上所述,建议对 III 型产品铬含量适当放宽,以便利国际贸易,并有利于先进生产技术推广和应用,对磷化工行业减小三废排放,提高资源综合利用率,保障供应链持续稳定具有重要的意义,也符合我国对磷矿资源的政策要求。
- (5) 实测数据对比验证情况。本次修标过程中先后 2 次对国内主要生产企业进行采样和测试,共采集样品数量 55 个,涉及企业 10 家(见表 1),覆盖贵州、云南、湖北主要磷矿产区,针对铬含量的分析检测典型数据(见附表)。

综合考虑以上各方面因素,本次修订标准对铬含量指标进行调整,由原来 3 个型号产品均不大于 30 mg/kg 更改为: I 型产品设置为不大于 30 mg/kg,II 型产品设置为不大于 35 mg/kg,III 型产品综合

考虑磷含量和生产工艺 2 方面的因素,设置为不大于 45 mg/kg。

2) 其他理化指标和卫生指标

2017 年版标准其他理化指标和卫生指标基本符合目前实际生产情况,从实测数据看绝大多数产品可以满足指标要求,因此本次修订除铬以外的其他指标未做修改。

综上所述,本标准确定的指标要求见表 4。

表 4 本标准确定理化指标、卫生指标

	- -		指标				
	项 目	I 型	II 型	III 型			
外观与性	状	白色.	或略带微黄色粉末或	 颖粒			
鉴别		试样溶液加草酸铵溶液产生白色沉淀,此沉淀溶于过量盐酸溶液。 试样溶液加硝酸银溶液产生黄色沉淀,此沉淀不溶于流乙酸,溶于过量氨水溶液。					
总磷 (P)	w/%	≥16.5	≥19.0	≥21.0			
枸溶性磷	(P) w/%	≥14.0	≥16.0	≥18.0			
水溶性磷	(P) w/%	_	≥8.0	≥10.0			
钙 (Ca)	w / %	≥20.0	≥14.0				
游离水分	w /%	≤4.0					
细度	粉状,通过0.5 mm网孔的试验筛		≥95				
w/%	粒状,通过2 mm网孔的试验筛		≥90				
氟 (F) /	(mg/kg)		≤1 800				
总砷(以	Asth) / (mg/kg)		≤20				
铅 (Pb)	/ (mg/kg)		€30				
镉 (Cd)	/ (mg/kg)		≤10				
铬 (Cr)	/ (mg/kg)	≤30 ≤35 ≤45					
用户对	细度有特殊要求时,由供需双方协商	首。					

3) 试验方法的确定

本次修订标准,理化指标的试验方法以 2017 年版标准为基础,根据对比试验结论对其中的鉴别、总磷、枸溶性磷、水溶性磷含量试验方法进行了改进,使测定方法更加科学,测定结果更加可靠,具体调整内容见本编制说明"试验验证的分析"。

2017 年版标准卫生指标的试验方法均采用饲料行业通用方法,其中氟、总砷、铅和镉的通用方法均已被修订,因此本次修订标准按现行有效版本进行了验证,确保方法的适用性和准确性。

3、试验验证的分析

1) 鉴别试验

本标准规定钙离子鉴别和磷酸盐鉴别。钙离子鉴别是基于钙离子与草酸铵反应生成白色草酸钙沉淀进行定性鉴定。磷酸盐鉴别是基于磷酸盐与硝酸银反应生产黄色磷酸银沉淀进行定性鉴定。

按 2017 年标准中钙离子鉴别对收集的样品进行验证,验证结果与标准中规定的现象完全一致,收集的 55 个样品的钙离子鉴别结果均为阳性。

按 2017 年标准中磷酸盐鉴别对收集的样品进行验证,发现沉淀的颜色与标准中描述不符,产生沉淀的黄色不明显(见图 5)。试验中将硝酸银溶液浓度由 17g/L 提高为 170g/L 后,得到了与标准规定一致的试验结果(见图 6)。

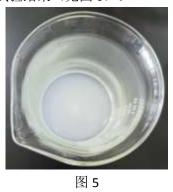


图 6

按调整后硝酸银溶液浓度对收集的 55 个样品进行磷酸盐定性鉴别,试验结果均为阳性。

2) 总磷(P)含量的测定

(1) 指标值的验证

2017 年标准规定了 3 个型号产品,总磷含量 I 型产品规定为不小于 16.5%,II 型产品规定为不小于 19.0%,III 型产品规定为不小于 21.0%,以上规定与农业部 2625 号公告是一致的,本次修订未对该指标值进行调整。附表 2 汇总了 55 个样品总磷含量实测数据,I 型 4 个产品最高值为 17.9%,最低值为 16.6%,平均值为 17.2%;III 型 20 个产品最高值为 21.8%,最低值为 21.2%,平均值为 21.4%。所检样品均符合本标准设置的指标要求。所检样品数据分布情况见图 7 和图 8。

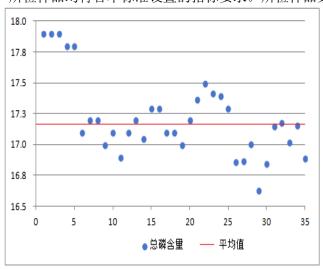


图7 I型产品总磷含量数据分布

图 8 Ⅲ 型产品总磷含量数据分布

(2) 试验方法

2017 年标准规定使用磷钼酸喹啉重量法测定总磷含量,该方法是在酸性介质中,试样中的磷酸根全部与加入的喹钼柠酮生成磷钼酸喹啉沉淀。经过滤、烘干、称量,确定总磷含量。

(3) 方法验证

喹钼柠酮是用钼酸铵、柠檬酸、硝酸和喹啉 4 种化学试剂按一定比例和一定方式配制的。本次修

订时发现 2017 年版标准规定的配制方法与 GB/T 603 中规定的配制方法存在差异。对 2 种不同配制方法形成的喹钼柠酮进行了对比试验。对比试验数据列于表 5,方法一为 2017 年标准规定的配制方法,方法二为 GB/T 603 规定的配制方法,验证方法除改动喹钼柠酮配制方法外,其他规定与 2017 年标准一致。

样品编号	1	2	3	4	5	6	7	8	9	10
方法一	17.17	17.16	17.01	17.15	16.88	17.02	21.70	21.60	21.45	21.50
方法二	17.15	17.18	17.02	17.16	16.89	17.03	21.81	21.80	21.55	21.50
差值	0.02	-0.02	-0.01	-0.01	-0.01	-0.01	-0.11	-0.2	-0.1	0
样品编号	11	12	13	14	15	16	17	18	19	20
方法一	21.62	21.53	21.74	21.64	21.25	21.49	21.48	21.06	21.45	21.35
方法二	21.51	21.53	21.83	21.54	21.29	21.52	21.54	21.34	21.41	21.40
差值	0.11	0	-0.09	0.1	-0.04	-0.03	-0.06	-0.28	0.04	-0.05

表 5 不同配制方法制备的喹钼柠酮影响总磷含量的对比试验数据(%)

使用 t 检验法对 2 方法对比试验结果进行数据统计结果:

d = 0.038 $S_d = 0.0891$ t = 1.91

总测定次数为 20,自由度 f=20-1=19,选取显著性水平 $\alpha=0.05$,由 t 分布表查得 $t_{0.05\ (19)}=2.09$ t $< t_{0.05\ (19)}$ 即两种方法测定结果之间无显著性差异。

从以上对比试验可以看出,使用二种方法检测结果之间不存在显著性差异。目前磷酸氢钙其他相关标准均使用 GB/T 603 规定的配制方法,为了标准间达到协调统一,本次修订标准删除 2017 年版标准中规定的配制方法。根据本标准 7.1 一般规定中的要求,企业应按 GB/T 603 进行配制。

3) 枸溶性磷(P)的测定

(1) 指标值的验证

2017年标准规定了 3 个型号产品,枸溶性磷含量 I 型产品规定为不小于 14.0 %,II 型产品规定为不小于 16.0%,III 型产品规定为不小于 18.0%,本次修订未对该指标值进行调整。附表 2 汇总了 55 个样品枸溶性磷含量实测数据,I 型 35 个产品最高值为 17.8%,最低值为 16.5%,平均值为 17.0%;III 型 20 个产品最高值为 21.5%,最低值为 20.8%,平均值为 21.1%。所检样品均符合本标准设置的指标要求。所检样品数据分布情况见图 9 和图 10。

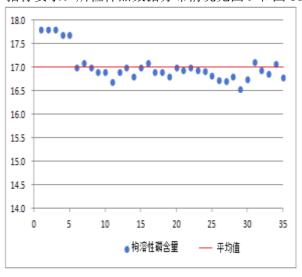


图9 I型产品枸溶性磷含量数据分布

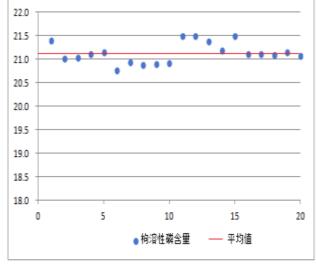


图 10 III 型产品枸溶性磷含量数据分布

(2) 试验方法

枸溶性磷是指能被中性柠檬酸溶液提取的磷,通常指有效磷,此值越高,说明磷酸氢钙越好。 2017年标准规定的测定方法是用中性柠檬酸铵溶液溶解和提取试样中的磷酸根,采用磷钼酸喹啉重量法测定磷含量。

(3) 方法验证

枸溶性磷试验与总磷试验一样,也出现了喹钼柠酮配制方法的问题。对比试验数据列于表 6,方法一为 2017 年标准规定的配制方法,方法二为 GB/T 603 规定的配制方法。

样品编号	1	2	3	4	5	6	7	8	9	10
方法一	17.10	16.98	16.88	17.10	16.75	16.89	20.70	20.87	20.89	21.03
方法二	17.12	16.95	16.86	17.08	16.78	16.95	20.91	20.99	20.77	21.01
差值	-0.02	0.03	0.02	0.02	-0.03	-0.06	-0.21	-0.12	0.12	0.02
样品编号	11	12	13	14	15	16	17	18	19	20
方法一	20.90	20.87	20.99	20.99	16.66	16.73	16.82	16.60	16.60	17.07
方法二	20.98	20.93	20.99	20.93	16.74	16.72	16.80	16.76	16.59	17.06
差值	-0.08	-0.06	0	0.06	-0.08	0.01	0.02	-0.16	0.01	0.01

表 6 不同配制方法制备喹钼柠酮影响枸溶性磷含量的对比试验数据(%)

使用 t 检验法对 2 方法对比试验结果进行数据统计结果:

 $\overline{d} = 0.025$ S_d=0.0774 t= 1.44

总测定次数为 20,自由度 f=20-1=19,选取显著性水平 $\alpha=0.05$,由 t 分布表查得 $t_{0.05\ (19)}=2.09$ t $< t_{0.05\ (19)}$ 即两种方法测定结果之间无显著性差异。

从以上对比试验可以看出,使用二种方法检测结果之间不存在显著性差异。

4) 水性磷(P)的测定

(1) 指标值的验证

2017年标准规定了 3 个型号产品,水溶磷含量 I 型产品未做要求,II 型产品规定为不小于 8.0%,III 型产品规定为不小于 10.0%,本次修订未对该指标值进行调整。附表 2 汇总了 III 型 20 个样品水溶性磷含量实测数据,最高值为 18.6%,最低值为 14.7%,平均值为 16.5%。所检样品均符合本标准设置的指标要求。所检样品数据分布情况见图 11。

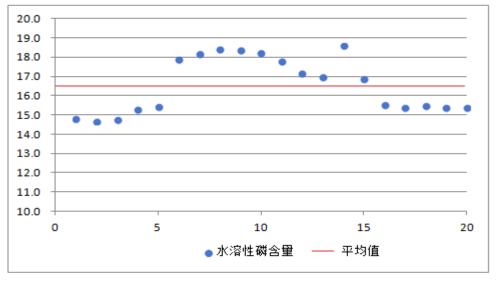


图 11 III 型产品水溶性磷含量数据分布

(2) 试验方法

2017年标准规定使用磷钼酸喹啉重量法测定水溶性磷含量,测定方法是将样品加水研磨,连续研磨4次,用水溶解和提取试样中的磷酸根,采用磷钼酸喹啉重量法测定磷含量。

(3) 方法验证

水溶性磷试验与总磷试验一样,也出现了喹钼柠酮配制方法的问题。对比试验数据列于表 7,方法一为 2017 年标准规定的配制方法,方法二为 GB/T 603 规定的配制方法。

		_ 1 4 / 4 / 1 / 1 4		****			, , , , , , , , , , , , , , , , , , ,	
样品编号	1	2	3	4	5	6	7	8
方法一	17.7	17.2	16.9	18.5	16.9	16.8	18.1	17.5
方法二	17.8	17.2	17.0	18.6	16.9	16.8	18.1	17.5
	0.1	0	0.1	0.1	0	0	0	0

表 7 不同配制方法制备喹钼柠酮影响水溶性磷含量的对比试验数据(%)

使用 t 检验法对 2 方法对比试验结果进行数据统计结果:

d = 0.0375 $S_d = 0.0518$ t = 2.05

总测定次数为 8,自由度 f=8-1=7,选取显著性水平 α =0.05,由 t 分布表查得 $t_{0.05}$ $_{(7)}$ =2.37 t $< t_{0.05}$ $_{(7)}$ 即两种方法测定结果之间无显著性差异。

从以上对比试验可以看出,使用二种方法检测结果之间不存在显著性差异。

5) 钙含量的测定

(1) 指标值的验证

钙含量是控制产品纯度的另一个指标,2017 年标准分别规定了 3 个型号产品的钙含量, I 型产品规定为不小于 20.0%, II 型产品规定为不小于 15.0%, III 型产品规定为不小于 14.0%,以上规定与农业部 2625 号公告是一致的,本次修订未对该指标值进行调整。附表 2 汇总了 55 个样品钙含量实测数据,I型 35 个产品最高值为 22.3%,最低值为 20.0%,平均值为 21.3%; III 型 20 个产品最高值为 16.9%,最低值为 15.6%,平均值为 16.5%。所检样品均符合本标准设置的指标要求。所检样品数据分布情况见图 12 和图 13。

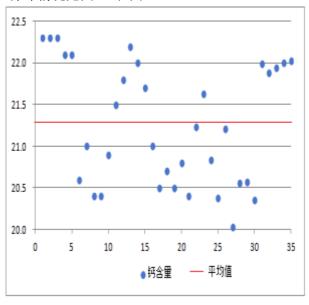


图 12 I型产品钙含量数据分布

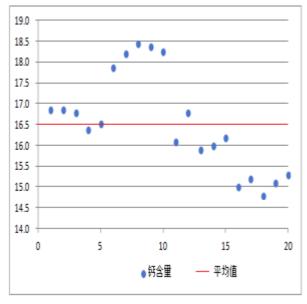


图 13 III 型产品钙含量数据分布

(2) 试验方法

2017 年版标准中使用的是 GB/T 6436—2002《饲料中钙的测定》中规定的方法"乙二胺四乙酸二钠络合滴定法",标准实施过程中未收集到对钙含量测定方法的意见。目前 GB/T 6436—2002 已被 GB/T 6436—2018 所替代,通过对比发现 2018 年版标准中"乙二胺四乙酸二钠络合滴定法"并未做改变。磷酸氢钙产品加盐酸煮沸后,钙元素可全部溶解于溶液中形成离子形式,可以不使用通用方法中规定的溶样方法。因此本次修订标准只是将引用标准的标准号进行相应修改,其他未做改变。

6) 游离水分的测定

(1) 指标值的验证

2017 年版标准 3 个型号产品的游离水分均规定为不大于 4.0%。本次修订标准未对该指标值进行调整。附表 2 汇总了 55 个样品游离水分的实测数据,最低值为 0.01%,最高值为 2.9%,平均值为 1.0%,所检样品均符合本标准设置的指标要求。所检样品数据分布情况见图 14。

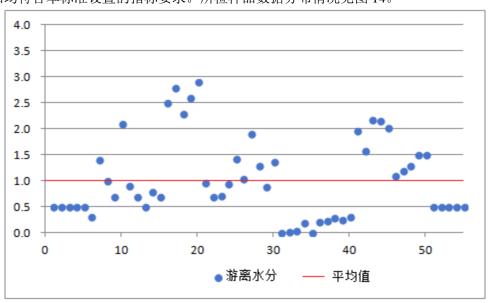


图 14 I型和 III 型产品游离水分数据分布

(2) 试验方法

磷酸氢钙结晶水的键合力很脆弱,在干燥过程中很容易因受热而失去结晶水,变成一水或无水磷酸氢钙,因此该产品不能使用常规的加热干燥法测定游离水分。2017 年版标准规定的方法是将样品置于玻璃砂坩埚中,反复用丙酮洗涤样品,带走游离水分,再将样品于 50 ℃±2 ℃的条件下干燥 2h,烘掉丙酮,冷却后称量,通过差减计算出游离水分。标准实施过程中未收集到对该测定方法的问题反馈,因此本次修订标准该方法不做修改。

7) 细度的测定

(1) 指标值的验证

细度指标属于应用型指标,实际生产时可根据客户需求进行协商,2017 年版标准细度指标设置 粉状产品为不小于 95%,粒装产品指标为不小于 90%。附表 2 汇总的 55 个样品细度实测数据,I 型产品为粉状,所检样品测定结果最高值为 100%,最低值为 96%,平均值为 99%,所检样品均符合本标准设置的指标要求。III 型产品为粒状,15 个测定结果最高值为 100%,最低值为 83%,平均值为 97%,所检样品中 2 个不符合本标准设置的指标要求,合格率为 96.4%。所检样品数据分布情况见图 15 和图 16。

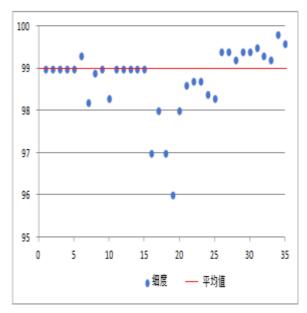


图 15 I型产品细度数据分布

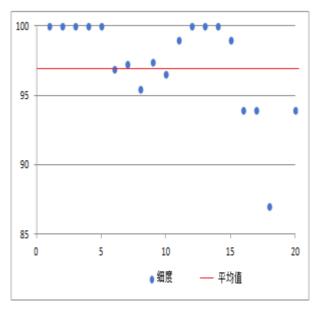


图 16 III 型产品细度数据分布

(2) 试验方法

2017 年版标准细度指标使用的是常规的筛分法,使用设备为符合 GB/T 6003.1-2022《试验筛 技术要求和检验 第 1 部分:金属丝编织网试验筛》规定的试验筛。试验方法经生产行业和用户长期使用,未发现异常情况,本次修订标准该试验方法不做修改。

8) 氟含量的测定

(1) 指标值的验证

2017 年版标准氟含量指标值规定为不大于 1800 mg/kg,本次修订未对该指标值进行调整。附表 2 汇总了 55 个样品氟含量实测数据,最低值为 997mg/kg,最高值为 1774mg/kg,平均值为 1457mg/kg;所检样品均符合本标准设置的指标要求。所检样品数据分布情况见图 17。

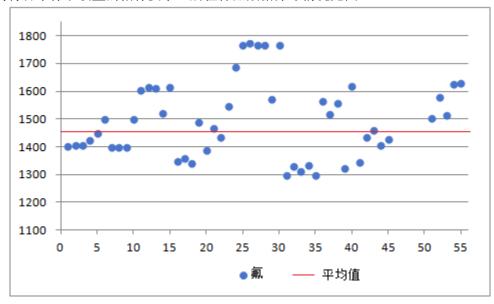


图 17 I型和 III 型产品氟含量数据分布

(2) 试验方法

2017年版标准氟含量测定方法使用的是饲料行业通用方法标准GB/T 13083-2002《饲料中氟的测定 离子选择性电极法》,标准中规定了试验溶液的制备步骤,测定直接引用了GB/T 13083-2002的第7章。2002年版氟含量测定通用方法标准已经被修订为GB/T 13083-2018,现行标准中标准曲线等测定步骤没做大的改动,因此本标准确定氟含量直接引用GB/T 13083,试样前处理方法还是沿用了2017年版的规定。

9) 总砷含量的测定

(1) 指标值的验证

2017 年版标准总砷含量指标设置为不大于 20 mg/kg,本次修订标准未对该项指标进行调整。附表 2 汇总的 55 个样品总砷含量实测数据,最低值为 2mg/kg,最高值为 18mg/kg,平均值为 9 mg/kg,所检样品均符合本标准设置的指标要求,合格率为 100%。所检样品数据分布情况见图 18。

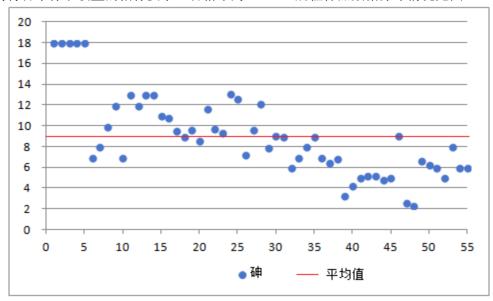


图 18 总砷含量数据分布

(2) 试验方法

2017 年版标准总砷含量测定使用的是饲料行业通用方法标准 GB/T 13079-2006《饲料中总砷的测定》中规定的银盐法,标准中规定试验溶液的制备步骤为称取 2.0g~10.0g 试样,精确至 0.0002g,加 20mL 盐酸溶液(1+1),加热溶解,冷却后移至 250mL 容量瓶中,加水稀释至刻度,摇匀,干过滤。此滤液为试验溶液,用于总砷、铅、镉和铬含量的测定。

2006年总砷含量测定通用方法标准已经被修订为 GB/T 13079-2022,该标准规定了 3 种测定方法,即银盐法、硼氢化物还原光度法和原子荧光光度法。本标准总砷含量指标为不大于 20mg/kg, 三种方法都可以进行检验,因此本标准确定总砷含量直接引用 GB/T 13079。

(3) 方法验证数据

GB/T 13079-2022 的 6.5.1 中规定了 4 种试样处理方法,分别为干灰化法、微波消解法、高压罐消解法、酸直接溶解法,其中的酸直接溶解法适用于矿物质饲料原料、不含有机物的微量元素预混合饲料、不含络合物的矿物质元素饲料添加剂。本产品为无机盐类饲料添加剂,适用的试样处理方法为酸直接溶解法。

考虑到 1997 年版标准规定的试样处理方法与 GB/T 13079-2022 规定的酸直接溶解法步骤存在一些差异,因此做了两种试样处理方法的对比试验,选用的测定方法为原子荧光光度法。对比试验数据

汇总于表 8, 方法一为 2017 年版标准, 方法二为 GB/T 13079-2022 规定的酸直接溶解法。

样品编号	1	2	3	4	5	6	7	8	9	10
方法一	6.1	5.3	5.0	4.7	4.5	4.8	4.3	4.4	8.5	2.7
方法二	5.0	5.2	5.0	5.3	5.4	5.2	4.9	5.0	9.1	2.7
差值	1.1	0.1	0.0	-0.6	-0.9	-0.4	-0.6	-0.6	-0.6	0.1
样品编号	11	12	13	14	15	16	17	18	19	20
方法一	2.0	6.6	5.7	8.5	5.2	5.8	6.9	9.2	12.8	8.8
方法二	2.4	6.7	6.3	9.3	5.7	6.1	7.3	9.7	12.2	7.9
差值	-0.42	-0.06	-0.62	-0.82	-0.46	-0.36	-0.4	-0.5	0.6	0.9

表 8 总砷含量对比试验数据(mg/kg)

使用 t 检验法对 2 方法对比试验结果进行数据统计结果:

d = 0.227 $S_d = 0.55$ t = 1.85

总测定次数为 20,自由度 f=20-1=19,选取显著性水平 $\alpha=0.05$,由 t 分布表查得 $t_{0.05\ (19)}=2.09$ t $< t_{0.05\ (19)}$ 即两种方法测定结果之间无显著性差异。

从以上对比试验可以看出,使用二种试样处理方法检测结果之间不存在显著性差异,本次修订直接引用 GB/T 13079 对测定结果无影响。

10) 铅含量的测定

(1) 指标值的验证

2017 年版标准铅含量规定为不大于 30mg/kg,本次修订标准未对该项指标进行调整。附表 2 汇总的 55 个样品铅含量实测数据,最低值为 0.3 mg/kg,最高值为 12mg/kg,平均值为 3mg/kg,所检样品均符合本标准设置的指标要求,合格率达到 100%。所检样品数据分布情况见图 19。

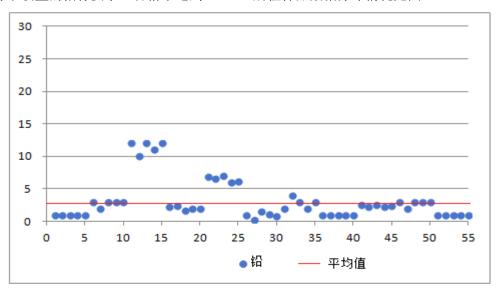


图 19 铅含量数据分布

(2) 试验方法

2017年版标准铅含量使用的是饲料行业通用方法标准 GB/T 13080-2004《饲料中铅的测定 原子吸收光谱法》,标准中规定了试样前处理方法与总砷含量一致,测定方法直接引用 GB/T 13080-2004的第7章。

2004年铅含量测定通用方法标准已经被 GB/T 13080-2018 代替,现行标准规定的方法为火焰原子吸收光谱法和石墨炉原子吸收光谱法。本标准确定铅含量直接采用 GB/T 13080,本标准规定的铅含

量为 30mg/kg, 首先考虑采用通用方法中的火焰原子吸收光谱法。

(3) 方法验证

GB/T 13080-2018 中 7.1 规定了 3 种试样处理方法,分别为干灰化法、高氯酸消化法和盐酸溶解法。本产品适用的试样处理方法为盐酸溶解法。

考虑到 1997 年版标准规定的试样处理方法与 GB/T 13080-2018 规定的盐酸溶解法步骤存在一些差异,因此做了两种试样处理方法的对比试验,选用的测定方法为火焰原子吸收光谱法。对比试验数据汇总于表 9,方法一为 2017 年版标准,方法二为 GB/T 13080-2018 规定的盐酸溶解法。

样品编号	1	2	3	4	5	6	7	8	9	10
方法一	1	0.4	2	1	1	1	3	1	4	2
方法二	1	0.3	1	1	1	2	3	1	3	2
差值	0	0.1	1	0	0	-1	0	0	1	0
样品编号	11	12	13	14	15	16	17	18	19	20
样品编号 方法一	3	12	13	14	15 3	16	17 4	18	19 4	20
				14 4 3			17 4 5	18 4 4	19 4 4	20 4 5

表 9 铅含量对比试验数据 (mg/kg)

使用 t 检验法对 2 方法对比试验结果进行数据统计结果:

 $\overline{d} = 0.00949$ S_d=0.377 t=0.11

总测定次数为 20,自由度 f=20-1=19,选取显著性水平 $\alpha=0.05$,由 t 分布表查得 $t_{0.05\ (19)}=2.09$ t $< t_{0.05\ (19)}$ 即两种方法测定结果之间无显著性差异。

从以上对比试验可以看出,使用二种试样处理方法检测结果之间不存在显著性差异,本次修订直接引用 GB/T 13080-2018 对测定结果无影响。

11) 镉含量的测定

(1) 指标值的验证

2017 年版标准镉含量指标设置为不大于 10mg/kg,本次修订标准未对该项指标进行调整。附表 2 汇总的 55 个样品镉含量实测数据,最低值为 1mg/kg,最高值为 6mg/kg,平均值为 2mg/kg。所检样品均符合本标准设置的指标要求,合格率为 100%。所检样品数据分布情况见图 20。

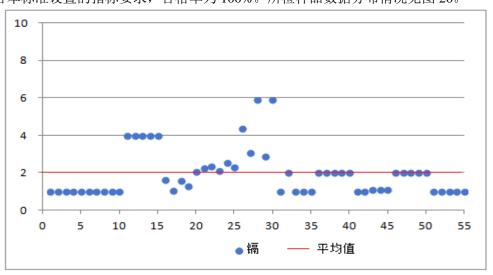


图 20 镉含量数据分布

(2) 试验方法

1997 年版标准中规定镉含量测定方法使用饲料行业通用方法标准 GB/T 13082-1991《饲料中镉的测定》,标准中规定了试样前处理方法同总砷,测定方法直接引用 GB/T 13082-1991 的 6.3。

镉含量现行通用方法标准为 GB/T 13082-2021,该标准中规定了火焰原子吸收光谱法和石墨炉原子吸收光谱法。本标准确定镉含量直接采用 GB/T 13082。

(3) 方法验证

GB/T 13082-2021 规定的火焰原子吸收光谱法测定镉含量,该标准 8.1 试样溶液制备中规定了 4 种试样处理方法,分别为干灰化法、湿消解法、湿消解法、微波消解法和盐酸溶解法,盐酸溶解法适用于矿物质饲料原料和矿物元素饲料添加剂,因此本标准试样处理方法选盐酸溶解法。

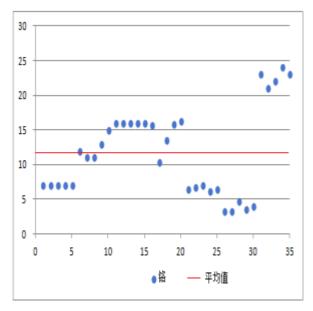
考虑到 1997 年版标准规定的试样处理方法与 GB/T 13082-2021 规定的盐酸溶解法步骤存在一些差异,因此做了两种试样处理方法的对比试验,选用的测定方法为火焰原子吸收光谱法。对比试验数据汇总于表 10,方法一为 2017 年版标准,方法二为 GB/T 13082-2021 规定的盐酸溶解法。

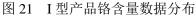
			-pt 10	44 H = 2.13	7 10 10 (32.5)	~ × × × × × × × × × × × × × × × × × × ×	115/			
样品编号	1	2	3	4	5	6	7	8	9	10
方法一	5	3	7	3	5	3	5	5	1	2
方法二	4	3	6	3	6	3	6	5	1	1
差值	1	0	1	0	-1	0	-1	0	0	1
样品编号	11	12	13	14	15	16	17	18	19	20
方法一	2	1	3	2	4	4	4	4	4	4
方法二	2	1	2	1	5	4	4	5	4	5
差值	0	0	1	1	-1	0	0	-1	0	-1

表 10 镉含量对比试验数据(mg/kg)

使用 t 检验法对 2 方法对比试验结果进行数据统计结果:

d = 0.05502 $S_d = 0.529$ t = 0.46


总测定次数为 20,自由度 f=20-1=19,选取显著性水平 $\alpha=0.05$,由 t 分布表查得 $t_{0.05\ (19)}=2.09$ t $< t_{0.05\ (19)}$ 即两种方法测定结果之间无显著性差异。


从以上对比试验可以看出,使用二种试样处理方法检测结果之间不存在显著性差异,本次修订直接引用 GB/T 13082-2021 对测定结果无影响。

12) 铬含量的测定

(1) 指标值的验证

本次修订标准对铬含量指标进行了调整, I 型产品设置为不大于 30 mg/kg, II 型产品设置为不大于 35 mg/kg, III 型产品设置为不大于 45 mg/kg。附表 2 汇总的 55 个样品铬含量实测数据, I 型 35 个产品最低值为 3mg/kg,最高值为 24mg/kg,平均值为 12mg/kg;III 型 20 个产品最低值为 25mg/kg,最高值为 39mg/kg,平均值为 35mg/kg。所检样品均符合本标准设置的指标要求。所检样品数据分布情况见图 21 和图 22。

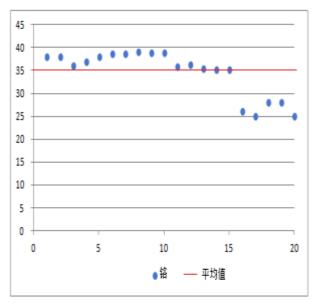


图 22 III 型产品铬含量数据分布

(2) 试验方法

1997年版标准铬含量使用的是 GB/T 13088-2006《饲料中铬的测定》,标准中规定的试样前处理方法同总砷,测定方法直接引用 GB/T 13088-2006的 3.5.2。GB/T 13088-2006标准仍为现行有效版本,本标准确定直接应用 GB/T 13088。

GB/T 13088-2006 的 3.4 试样制备中只规定了一种处理方法即干灰化法,本次修订对干灰化法进行了验证,磷酸氢钙产品无法完全溶解,用通用方法中的溶样方法无法完成测定。因此继续沿用 1997 年版标准中规定试验前处理方法。

4、样品验证数据与本标准要求符合情况说明

共收集到 10 家生产企业生产的 55 个样品,其中 I 型产品 35 个,II 型产品 20 个,所有样品验证数据列于附表 2,其中有 2 个样品细度实测数据高于指标要求(指标值为 90 %),其余 53 个样品全部指标合格,合格率达到 96.4%。

5、检验规则的确定

- 1) 组批:根据目前实际生产情况确定对批量进行调整,按照 30 万吨/年产能计,以相同材料、相同生产工艺、连续生产同一班次生产的产品数量最多已达 350t,较以前提高约 7 倍。因此将原来的每批产品不超过 60 t 调整为 200 t。
 - 2) 取样: 按 GB/T 14699 的规定执行。
 - 3) 出厂检验:外观与性状、总磷、枸溶性磷、水溶性磷、钙、游离水分和氟。
 - 4) 型式检验

型式检验项目为本标准第5章规定的所有项目,在正常生产情况下,每6个月至少进行1次型式检验。在有下列情况之一时,亦应进行型式检验:

- a) 产品定型投产时;
- b) 生产工艺、配方或主要原料来源有较大改变,可能影响产品质量时;

- c) 停产3个月以上,重新恢复生产时;
- d) 出厂检验结果与上次型式检验结果有较大差异时;
- e) 饲料管理部门提出检验要求时。
- 5) 判定规则: 所验项目全部合格,判定为该批次产品合格。检验结果中有任何项指标不符合本文件规定,可自同批产品中重新加倍取样进行复检。复检结果有一项指标不符合文件规定,即判该批产品不合格。按 GB/T 8170 中修约值比较法判定指标的极限数值。

8、标签、包装、运输、贮存和保质期

- (1) 标签按 GB 10648 的规定执行。
- (2) 包装材料应无毒、无害、防潮、防泄漏。
- (3) 运输中应防止包装破损、防潮、防晒,不应与有毒有害物质混运。
- (4) 贮存在干燥的库房内,防止日晒、雨淋,不应与有毒有害物质混贮。
- (5) 未开启包装的产品,在规定的运输、贮存条件下,产品保质期与标签中标明的保质期一致。

三、与有关法律、行政法规和其他强制性标准的关系,配套推荐性标准的修订情况

本标准符合《标准化法》《产品质量法》《饲料和饲料添加剂管理条例》等现行法律法规的要求,同时符合 GB 10648—2013《饲料标签》等强制性国家标准的要求。

与本标准有关的推荐性标准配套完备,主要包括 GB/T 601、GB/T 603、GB/T 6003.1—2022、GB/T 6436—2018、GB/T 6682、GB/T 8170、GB/T 13079、GB/T 13080、GB/T 13082、GB/T 13083、GB/T 13088、GB/T 14699、GB/T 23769 等。

四、与国际标准化组织、其他国家或者地区有关法律法规和标准的比对分析

目前收集到美国饲料管理协会(AAFCO)《饲料成分定义指南》和(EU) No 682013 欧盟《饲料原料目录》,该法规中规定磷酸氢钙这个品种,但都是对总磷含量和钙含量的粗略要求。未收集到国际标准化组织标准。

该标准是对 2017 年版标准的修订,国际国外无对应标准进行比对。按本标准组织生产的产品出口国外,可满足国外饲料行业用户的使用。本标准涉及分析方法均采用国家标准通用方法。

五、重大分歧意见的处理过程、处理意见及其依据

无重大分歧意见。

六、对强制性国家标准自发布日期至实施日期之间的过渡期(以下简称过渡期)的建议及理由

建议按照强制性国家标准管理办法设置自发布日期至实施日期的过渡期,并在过渡期期间积极宣贯标准,使生产企业和下游客户尽快了解标准的技术内容。使生产企业有时间消耗库存产品,调整生产设备、检测手段等,以配合产品质量达标和满足检测要求。预计过渡期需要6个月左右时间。

七、与实施强制性国家标准有关的政策措施

根据《强制性国家标准管理办法》第九条,县级以上人民政府标准化行政主管部门和有关行政主管部门依据法定职责,对强制性国家标准的实施进行监督检查。根据《饲料和饲料添加剂管理条例》

第三条规定,国务院农业行政主管部门负责全国饲料、饲料添加剂的监督管理工作。县级以上地方人 民政府负责饲料、饲料添加剂管理的部门(以下简称饲料管理部门),负责本行政区域饲料、饲料添加剂的监督管理工作。第四条,县级以上地方人民政府统一领导本行政区域饲料、饲料添加剂的监督管理工作,建立健全监督管理机制,保障监督管理工作的开展。

八、是否需要对外通报的建议及理由

国外市场流通的饲料添加剂磷酸氢钙产品,有来自国内企业生产的产品,按照世界贸易组织 (WTO)的 TBT 规则,为保证产品公正、公平进行贸易,同时依据《强制性国家标准管理办法》要求,建议对外通报。

九、废止现行有关标准的建议

无。

十、涉及专利的有关说明

本标准未涉及专利。

十一、强制性国家标准所涉及的产品、过程或者服务目录

本文件适用于以湿法磷酸为原料,经化学合成生产的饲料添加剂磷酸氢钙。

十二、其他应予以说明的事项

无。

附表 1

饲料添加剂 第3部分: 矿物元素及其络(螯)合物 磷酸氢钙国内标准指标对比表

	4	./14 /10 .	O H1-73 •	19 1/4/ 11/4	())() (+ H	(A)	191100	到上1404年1月407711046			
农业部	7公告第	2625 号	GB	22549-2	017	GB 1886	5.3-2021	美国饲料管理协会		比 ////////////////////////////////////	住
《饲料	斗添加剂	安全使	饲料添	加剂 磷	酸氢钙	食品添加剂	亅磷酸氢钙	(AAFCO)《饲料	/-	P (八) 修 (7) 你 (7)	性
	用规范》	>	I型	II 型	III 型	二水物	无水物	成分定义指南》	I型	II 型	III 型
			白色或	略带微黄	色粉末	白色晶体、	晶体粉末或		白名武政	弗 德	*
				或颗粒		颗	粒		口口以哨	甲級與己彻	小以秋州
16.5	19.0	21.0	16.5	19.0	21.0			须规定最小值	16.5	19.0	21.0
			14.0	16.0	18.0				14.0	16.0	18.0
			_	8.0	10.0				_	8.0	10.0
20.0	15.0	14.0	20.0	15.0	14.0			须规定最小值	20.0	15.0	14.0
				4.0						4.0	
				05				05		05	
				95				95		95	
				00				00		00	
				90				90		90	
				1800		50	0.0			1800	
				20		2.	.0			20	
				30		2.	.0			30	
				10						10	
				30					30	35	45
						98.0~105.0					
							98.0~105.0				
						24.5~26.5	7.0~8.5				
						0.0	05				
						1	0				
							U				
			注:用户	対细度有	有特殊要				用户对细度	有特殊要求	讨时,由供需
			求时, 目	由供需双	方协商				双方协商		
	16.5	(饲料添加剂用规范) 16.5 19.0 20.0 15.0	【饲料添加剂安全使用规范》	(饲料添加剂安全使用规范) 日型 自色或 日 日 日 日 日 日 日 日 日	《饲料添加剂安全使 用规范	《饲料添加剂安全使 日料添加剂 磷酸氢钙 日型 II 型 III 型 自色或略帯微黄色粉末 或颗粒 14.0 16.5 19.0 21.0 14.0 16.0 18.0 18.0 18.0 10.0 15.0 14.0 15.0 14.0 16.0 18.0 16.0 18.0 16.5 19.0 18.0 10.0 15.0 14.0 16.0 18.0 16.0 16.0 18.0 16.0 16.0 18.0 16.0 16.0 18.0 16.0 16.0 18.0 16.0 16.0 18.0 16.0 16.0 18.0 16.0 16.0 18.0 16.0 16.0 18.0 16.0 16.0 16.0 18.0 16.0 16.0 18.0 16.0 16.0 16.0 18.0 16.0 16.0 18.0 16.0	《饲料添加剂安全使 饲料添加剂 磷酸氢钙 食品添加剂 1型 III 型 III 型 二水物 白色或略帯微黄色粉末	信料添加剂安全使 信料添加剂 磷酸氢钙 食品添加剂 磷酸氢钙 日型 田型 二水物 五水物 日色或略帯微黄色粉末 或颗粒 類粒 14.0 16.5 19.0 21.0 14.0 16.0 18.0	《饲料添加剂安全使 同料添加剂 磷酸氢钙 食品添加剂 磷酸氢钙 成分定义指南》 日型 田型 二水物 无水物 成分定义指南》 日色或略带微黄色粉末 改颗粒 一 8.0 10.0 16.5 19.0 21.0 16.5 19.0 21.0 14.0 16.0 18.0	信料添加剂安全性 行機酸氢钙 食品添加剂 磷酸氢钙 成分定义指南》 1型 11型 11型	信利添加剂安全使

附表 2: 验证数据

饲料添加剂磷酸氢钙I型产品验证数据

	177 LI	六 7米 (D)	45 20 44. 7米			总砷(以			th (C)	光声しい	细	度
单位	样品	总磷 (P)	枸溶性磷	钙(C)(W	氟 (F)	A 计 s)	铅 (Pb)	镉(Cd)	铬 (Cr)	游离水分	(通过 0.5mm	(通过 2mm
	编号	/%	(P) /%	(Ca) /%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	/%	试验筛)/%	试验筛)/%
	1	17.9	17.8	22.3	1405	18	1	1	7	0.5	99	_
	2	17.9	17.8	22.3	1406	18	1	1	7	0.5	99	_
A 公司(贵州)	3	17.9	17.8	22.3	1406	18	1	1	7	0.5	99	_
	4	17.8	17.7	22.1	1424	18	1	1	7	0.5	99	
	5	17.8	17.7	22.1	1451	18	1	1	7	0.5	99	
	6	17.1	17.0	20.6	1500	7	3	1	12	0.3	99	
	7	17.2	17.1	21.0	1400	8	2	1	11	1.4	98	_
B 公司 (湖北)	8	17.2	17.0	20.4	1400	10	3	1	11	1.0	99	_
	9	17.0	16.9	20.4	1400	12	3	1	13	0.7	99	_
	10	17.1	16.9	20.9	1500	7	3	1	15	2.1	98	_
	11	16.9	16.7	21.5	1605	13	12	4	16	0.9	99	_
	12	17.1	16.9	21.8	1618	12	10	4	16	0.7	99	_
C 公司(云南)	13	17.2	17.0	22.2	1614	13	12	4	16	0.5	99	_
	14	17.1	16.8	22.0	1524	13	11	4	16	0.8	99	_
	15	17.3	17.0	21.7	1618	11	12	4	16	0.7	99	_
	16	17.3	17.1	21.0	1351	11	2	2	16	2.5	97	_
	17	17.1	16.9	20.5	1360	10	2	1	10	2.8	98	_
D 公司(江苏)	18	17.1	16.9	20.7	1344	9	2	2	14	2.3	97	_
	19	17	16.8	20.5	1490	10	2	1	16	2.6	96	_
	20	17.2	17.0	20.8	1390	9	2	2	16	2.9	98	_

饲料添加剂磷酸氢钙I型产品验证数据

单位	1 六 口	公 7米 (D)	护凉加强		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	总砷 (以			th (C)	沙克克人八	细度	
	样品	总磷 (P)	枸溶性磷	钙 (C) (2)	氟 (F)	A 计 s)	铅 (Pb)	镉 (Cd)	铬 (Cr)	游离水分	(通过 0.5mm	(通过 2mm
	编号	/%	(P) /%	(Ca) /%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	/%	试验筛)/%	试验筛)/%
E公司(云南)	21	17.4	16.9	20.4	1468	12	7	2	6	1.0	99	_
	22	17.5	17.0	21.2	1438	10	7	2	7	0.7	99	_
	23	17.4	17.0	21.6	1550	9	7	2	7	0.7	99	_
	24	17.4	16.9	20.8	1687	13	6	3	6	1.0	98	_
	25	17.3	16.8	20.4	1770	13	6	2	6	1.4	98	_
F公司(云南)	26	16.9	16.7	21.2	1774	7	1	4	3	1.0	99	_
	27	16.9	16.7	20.0	1767	10	0.3	3	3	1.9	99	_
	28	17.0	16.8	20.6	1767	12	1	6	5	1.3	99	_
	29	16.6	16.5	20.6	1574	8	1	3	4	0.9	99	_
	30	16.9	16.8	20.4	1767	9	1	6	4	1.4	99	_
G 公司(云南)	31	17.2	17.1	22.0	1299	9	2	1	23	0.01	100	_
	32	17.2	17.0	21.9	1333	6	4	2	21	0.03	99	_
	33	17.0	16.9	22.0	1312	7	3	1	22	0.04	99	_
	34	17.2	17.1	22.0	1335	8	2	1	24	0.2	100	_
	35	16.9	16.8	22.0	1298	9	3	1	23	0.01	100	_

饲料添加剂磷酸氢钙III型产品验证数据

	1¥ U	公 7% (P)	4万2岁 44.7%			总砷(以	上 (四)		th (C)	沙丘克山八	细度	
单位	样品	总磷 (P)	枸溶性磷	钙(C)(W	氟 (F)	A 计 s)	铅 (Pb)	镉(Cd)	铬 (Cr)	游离水分	(通过 0.5mm	(通过 2mm
	编号	/%	(P) /%	(Ca) /%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	/%	试验筛)/%	试验筛)/%
G 公司(云南)	1	17.9	17.8	22.3	1405	18	1	1	7	0.5	99	_
	2	17.9	17.8	22.3	1406	18	1	1	7	0.5	99	_
	3	17.9	17.8	22.3	1406	18	1	1	7	0.5	99	_
	4	17.8	17.7	22.1	1424	18	1	1	7	0.5	99	_
	5	17.8	17.7	22.1	1451	18	1	1	7	0.5	99	_
H 公司(云南)	6	17.1	17.0	20.6	1500	7	3	1	12	0.3	99	_
	7	17.2	17.1	21.0	1400	8	2	1	11	1.4	98	_
	8	17.2	17.0	20.4	1400	10	3	1	11	1.0	99	_
	9	17.0	16.9	20.4	1400	12	3	1	13	0.7	99	
	10	17.1	16.9	20.9	1500	7	3	1	15	2.1	98	_
I公司(云南)	11	16.9	16.7	21.5	1605	13	12	4	16	0.9	99	
	12	17.1	16.9	21.8	1618	12	10	4	16	0.7	99	_
	13	17.2	17.0	22.2	1614	13	12	4	16	0.5	99	_
	14	17.1	16.8	22.0	1524	13	11	4	16	0.8	99	_
	15	17.3	17.0	21.7	1618	11	12	4	16	0.7	99	_
J公司(贵州)	16	17.3	17.1	21.0	1351	11	2	2	16	2.5	97	_
	17	17.1	16.9	20.5	1360	10	2	1	10	2.8	98	_
	18	17.1	16.9	20.7	1344	9	2	2	14	2.3	97	_
	19	17	16.8	20.5	1490	10	2	1	16	2.6	96	_
	20	17.2	17.0	20.8	1390	9	2	2	16	2.9	98	_

参考文献

- [1] 《强制性国家标准管理办法》(国家市场监督管理总局令 2019 年第 25 号)
- [2] 《饲料添加剂安全使用规范》(农业部公告 2017 年第 2625 号)
- [3] GB/T 1.1—2020 标准化工作导则 第1部分:标准化文件的结构和起草规则
- [4] GB/T 601 化学试剂 标准滴定溶液的制备
- [5] GB/T 603 化学试剂 试验方法中所用制剂及制品的制备
- [6] GB 1886.3—2021 食品安全国家标准 食品添加剂 磷酸氢钙
- [7] GB/T 6003.1—2022 试验筛 技术要求和检验 第 1 部分: 金属丝编织网试验筛
- [8] GB/T 6436—2018 饲料中钙的测定
- [9] GB/T 6682—2008 分析实验室用水规格和试验方法
- [10] GB 10648—2013 饲料标签
- [11] GB/T 13079—2022 饲料中总砷的测定
- [12] GB/T 13080—2018 饲料中铅的测定 原子吸收光谱法
- [13] GB/T 13082—2021 饲料中镉的测定
- [14] GB/T 13083—2018 饲料中氟的测定 离子选择性电极法
- [15] GB/T 13088—2006 饲料中铬的测定
- [16] GB/T 14699—2023 饲料 采样
- [17] GB 22549—2017 饲料添加剂 磷酸氢钙